Đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = 1 - x - x + 2 có phương trình lần lượt là
A. x=1,y=2
B. x=2,y=1
C. x=2,y= 1 2
D. x=2,y=-1
Xét các mệnh đề sau
(1). Đồ thị hàm số y = 1 2 x - 3 có hai đường tiệm cận đứng và một đường tiệm cận ngang
(2). Đồ thị hàm số y = x + x 2 + x + 1 x có hai đường tiệm cận ngang và một đường tiệm cận đứng
(3). Đồ thị hàm số y = x - 2 x - 1 x 2 - 1 có một đường tiệm cận ngang và hai đường tiệm cận đứng.
Số mệnh đề đúng là:
A. 0
B. 3
C. 2
D. 1
Đáp án D
Đồ thị hàm số y = 1 2 x - 3 có hai đường tiệm cận đứng và một đường tiệm cận ngang
Đồ thị hàm số y = x + x 2 + x + 1 x có 1 tiệm cận đứng là x = 0
Mặt khác lim x → + ∞ y = x + x 2 + x + 1 x = lim x → + ∞ x + x + 1 x + 1 x 2 x = 0 nên đồ thị hàm số có 2 tiệm cận ngang
Xét hàm số y = x - 2 x - 1 x 2 - 1 = x - 2 x - 1 x + 2 x - 1 x 2 - 1 = x - 1 x + 2 x - 1 x - 1 x > 1 2 suy ra đồ thị không có tiệm cận đứng. Do đó có 1 mệnh đề đúng
Các đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số y = 1 - x + x 3 3 + x là:
A. x=-3; y=1
B. x=-3; y=-1/2
C. x=3; y=1/2
D. x=3; y=-1/2
Đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = 1 − 2 x − x + 2 là:
A. x = − 2 ; y = − 2
B. x = 2 ; y = − 2
C. x = − 2 ; y = 2
D. x = 2 ; y = 2
Đáp án là D.
Đồ thị có tiệm cận đứng và tiệm cận ngang lần lượt là: x = 2 ; y = 2.
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \(\dfrac{x+\sqrt{x^2+1}}{x+1}\)
Lời giải:
TXĐ: \((-\infty; -1)\cup (-1;+\infty)\)
\(\lim\limits_{x\to +\infty}y=\lim\limits_{x\to +\infty}\frac{1+\sqrt{1+\frac{1}{x}}}{1+\frac{1}{x}}=\frac{1+1}{1}=2\)
\(\lim\limits_{x\to -\infty}y=\lim\limits_{x\to -\infty}\frac{-1+\sqrt{1+\frac{1}{x^2}}}{-1+\frac{1}{-x}}=\frac{-1+1}{-1}=0\)
Do đó ĐTHS có 2 TCN là $y=0$ và $y=2$
\(\lim\limits_{x\to -1-}y=\lim\limits_{x\to -1-}\frac{x+\sqrt{x^2+1}}{x+1}=-\infty\) do \(\lim\limits_{x\to -1-}(x+\sqrt{x^2+1})=\sqrt{2}-1>0\) và \(\lim\limits_{x\to -1-}\frac{1}{x+1}=-\infty\)
Tương tự \(\lim\limits_{x\to -1+}y=+\infty\) nên $x=-1$ là TCĐ của đths
Vậy có tổng 3 TCN và TCĐ
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = x + 3 x - 1 x 2 - 1 là
A. 1.
B. 2.
C. 3
D. 4.
Đồ thị hàm số y = 1 − x 1 + x có đường tiệm cận đứng và đường tiệm cận ngang là
A. x = − 1 ; y = − 1
B. x = 1 ; y = 1
C. x = 1 ; y = − 1
D. x = − 1 ; y = 1
Các đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số y = x - 1 x + 1 lần lượt là
A. y = 1 , x = 1
B. y = - 1 , x = 1
C. y = - 1 , x = - 1
D. y = 1 , x = - 1
Chọn đáp án D
Phương pháp
+) Đường thẳng x=a được gọi là TCĐ của đồ thị hàm số y = f ( x ) ⇔ lim x → a f ( x ) = ∞ .
+) Đường thẳng y=b được gọi là TCN của đồ thị hàm số y = f ( x ) ⇔ lim x → ± ∞ f ( x ) = b
Các đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số y = x - 1 x + 1 lần lượt là
A. y=1;x=1
B. y=-1;x=1
C. y=-1;x=-1
D. y=1;x=-1
Đồ thị hàm số y = 5 x 2 + x + 1 2 x - 1 - x có bao nhiêu đường tiệm cận đứng và đường tiệm cận ngang?
A. 1
B. 3
C. 2
D. 4
Đáp án là C
Hàm số đã cho có tập xác định
Ta có nên đồ thị nhận đường thẳng làm tiệm cận ngang.
nên đồ thị nhận đường thẳng x = 1 làm tiệm cận đứng.
Vậy đồ thị hàm số đã cho có 2 đường tiệm cận đứng và ngang.
Đồ thị hàm số y = 5 x 2 + x + 1 2 x - 1 - x có bao nhiêu đường tiệm cận đứng và đường tiệm cận ngang
A. 3
B. 1
C. 4
D. 2