Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Fei Rune

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 2 2018 lúc 2:31

Để hàm số đồng biến với mọi x > 0 thì a > 0

nên 4 – 3m > 0 ⇔ 4 > 3m

⇔ 3m < 4  ⇔ m < 4 3

Vậy m < 4 3  thỏa mãn điều kiện đề bài

Đáp án cần chọn là: C

Nguyễn Văn Dân
Xem chi tiết
Nguyễn Anh Tú
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 4 2019 lúc 17:41

Xét phương trình hoành độ giao điểm của d và d’:

− 4 x   +   m   +   1   =   4 3   x   +   15   –   3 m ⇔ - 16 m   x   =   14   –   4 m   ⇔   x   =   3 4 m − 14 16  

d cắt d’ tại điểm nằm trên trục tung

  ⇔     x   = 3 4 m − 14 16     =   0 ⇔     4 m   –   14   =   0   ⇔   m = 7 2

Đáp án cần chọn là: D

Trần Hà Nhung
Xem chi tiết
Jack Yasuo
Xem chi tiết
CauBeNguNgo Official
15 tháng 11 2018 lúc 22:10

\(\text{a.Ta có :}\)

\(x^{8n}+x^{4n}+1=x^{8n}+2x^{4n}+1-x^{4n}\)

\(=\left(x^{4n}+1\right)^2-\left(x^{2n}\right)^2\)

\(=\left(x^{4n}-x^{2n}+1\right)\left(x^{4n}+x^{2n}+1\right)\)

\(\text{Ta lại có :}\)

\(x^{4n}+x^{2n}+1=x^{4n}+2x^{2n}+1-x^{2n}\)

\(=\left(x^{2n}+1\right)^2-\left(x^n\right)^2=\left(x^{2n}-x^n+1\right)\left(x^{2n}+x^n+1\right)\)

\(\Rightarrow x^{8n}+x^{4n}+1=\left(x^{4n}-x^{2n}+1\right)\left(x^{2n}-x^n+1\right)\left(x^{2n}+x^n+1\right)\)

\(\Rightarrow x^{8n}+x^{4n}+1⋮x^{2n}+x^n+1\)

Ngô Châu Bảo Oanh
Xem chi tiết
Akai Haruma
30 tháng 8 2017 lúc 10:05

Lời giải:

Ta có:

\(x^{8n}+x^{4n}+1=(x^{4n})^2+2.x^{4n}+1-x^{4n}\)

\(=(x^{4n}+1)^2-x^{4n}=(x^{4n}+1+x^{2n})(x^{4n}+1-x^{2n})\)

Xét \(x^{4n}+1+x^{2n}=(x^{2n})^2+2.x^{2n}+1-x^{2n}=(x^{2n}+1)^2-x^{2n}\)

\(=(x^{2n}+1+x^n)(x^{2n}+1-x^n)\)

Do đó:

\(x^{8n}+x^{4n}+1=(x^{4n}+1-x^{2n})(x^{2n}+1+x^n)(x^{2n}+1-x^n)\)

\(\Rightarrow x^{8n}+x^{4n}+1\vdots x^{2n}+x^n+1\) (đpcm)

b)

Sửa đề: \(x^{3m+1}+x^{3n+2}+1\vdots x^2+x+1\)

Đặt \(A=x^{3m+1}+x^{3n+2}+1\)

\(\Leftrightarrow A=x(x^{3m}-1)+x+x^2(x^{3n}-1)+x^2+1\)

\(\Leftrightarrow A=x[ (x^3)^m-1]+x^2[(x^3)^n-1]+(x^2+x+1)\)

Khai triển:

\((x^3)^m-1=(x^3)^m-1^m=(x^3-1).T=(x-1)(x^2+x+1)T\)

(đặt là T vì phần biểu thức đó không quan trọng)

\(\Rightarrow (x^3)^m-1\vdots x^2+x+1\)

Tương tự, \((x^3)^n-1\vdots x^2+x+1\)

Do đó, \(A=x(x^{3m}-1)+x^2(x^{3n}-1)+x^2+x+1\vdots x^2+x+1\)

Ta có đpcm.

Wakanda forever
Xem chi tiết
๖²⁴ʱんuリ イú❄✎﹏
27 tháng 10 2019 lúc 12:31

a, Ta có :\(x^{8n}+x^{4n}+1=x^{8n}+2x^{4n}+1-x^{4n}\)

\(=\left(x^{4n}+1\right)^2-\left(x^{2n}\right)^2\)

\(=\left(x^{4n}+x^{2n}+1\right)\left(x^{4n}-x^{2n}+1\right)\)

\(=\left(x^{4n}+2x^{2n}+1-x^{2n}\right)\left(x^{4n}-x^{2n}+1\right)\)

\(=\left[\left(x^{2n}+1\right)-\left(x^n\right)^2\right]\left(x^{4n}-x^{2n}+1\right)\)

\(=\left(x^{2n}+1-x^n\right)\left(x^{2n}+1+x^n\right)\left(x^{4n}-x^{2n}+1\right)\)

\(\Leftrightarrow x^{8n}+x^{4n}+1⋮x^{2n}+x^n+1\left(\forall x\right)\)

Khách vãng lai đã xóa
Đỗ Nguyễn Nguyên Ngọc
Xem chi tiết
tao cchytudb
2 tháng 1 2019 lúc 20:55

bai re vai lam 30 giay