Có bao nhiêu cách xếp 7 người vào hai dãy ghế sao cho dãy ghế đầu có 4 người và dãy sau có 3 người.
Có bao nhiêu các xếp 7 người vào hai dãy ghế sao cho dãy ghế đầu có 4 người và dãy sau có 3 người ?
Chọn 4 người để xếp vào 4 ghế ở dãy đầu : có \(A_7^4\) cách. Còn lại 3 người xếp vào 3 ghế ở dãy sau : Có 3! cách
Vậy có tất cả \(A_7^4.3!=5040\) cách xếp
Trong một phòng có 144 người họp được sắp xếp ngồi hết trên các dãy ghế ( số người trên mỗi dãy ghế đều bằng nhau). Nếu người ta thêm vào phòng họp 4 dãy ghế nữa, bớt mỗi dãy ghế ban đầu 3 người và xếp lại chỗ ngồi cho tất cả các dãy ghế sao cho số người trên mỗi dãy ghế đều bằng nhau thì vừa hết các dãy ghế. Hỏi ban đầu trong phòng họp có bao nhiêu dãy ghế?
bài mẫu nè:
gọi số dãy ghế là x, số ghê là y
theo đb ta có hpt
(x-2)(y+2)=288
xy=288
giải pt tìm đk x=18; y=16
trong phòng họp có 500 người được xếp trên các dãy. nếu thêm 3 dãy ghế vào 1 dãy ghế thêm 2 chỗ thì được 616 người . hỏi lúc đầu trong phòng có bao nhiêu dãy ghế và 1 dãy có bao nhiêu ghế
Gọi số dãy ghế ban đầu có trong phòng là x(dãy)
ĐK: x thuộc N*, x thuộc Ư(500)
Thì số ghế xếp mỗi dãy là : \(\frac{500}{x}\)(ghế)
Nếu thêm 3 dãy ghế và 1 dãy ghế thêm 2 chỗ thì được 616 người, nên ta có: \(\left(x+3\right).\left(\frac{500}{x}+2\right)=616\)
<=> 500 + 2x + \(\frac{1500}{x}\)+6 = 616
<=> -110 + 2x + \(\frac{1500}{x}\)=0
<=> 2x2 -110x + 1500 = 0
<=> x2 -55x + 750 = 0
Giải pt ta được:
x1 = 30
x2 = 25
.Khi x = x1 = 30, ta có số ghế của mỗi dãy: 500 : 30 =50/3 (KTMĐK)
.Khi x = x2 = 25, ta có số ghế của mỗi dãy: 500 : 25 =20 (TMĐK)
Vậy, ban đầu phòng học có 25 dãy ghế, mỗi dãy có 20 ghế.
một phòng học có 150 người, được sắp xếp ngồi đều trên các dãy ghế. nếu có thêm 71 người thì phải kê thêm hai dãy ghế thế vào mỗi dãy ghế phải bố trí thêm 3 người nữa. hỏi lúc đầu phòng học có bao nhiêu dãy ghế
Lời giải:
Giả sử ban đầu có $a$ dãy ghế thì mỗi dãy có $b$ người. Trong đó $a,b$ là số tự nhiên $\neq 0$. Ta có: $ab=150(1)$
Khi thêm 71 người thì có tổng $150+71=221$ người.
Số dãy ghế: $a+2$
Số người mỗi dãy: $b+3$
Ta có: $(a+2)(b+3)=221(2)$
Từ $(1); (2)\Rightarrow 3a+2b=65$
$\Rightarrow b=\frac{65-3a}{2}$. Thay vào $(1)$ thì:
$a.\frac{65-3a}{2}=150$
$\Leftrightarrow a(65-3a)=300$
$\Leftrightarrow 3a^2-65a+300=0$
$\Leftrightarrow a=15$ (chọn) hoặc $a=\frac{20}{3}$ (loại)
Vậy có $15$ dãy ghế.
Trong một phòng họp có 70 người dự họp được sắp xếp ngồi đều trên các dãy ghế.Nếu bớt đi hai dãy ghế thì mỗi dãy ghế còn lại phải xếp thêm 4 người mới đủ chỗ ngồi.Hỏi lúc đầu phòng họp có mấy dãy ghế và mỗi dẫy ghế được xếp bao nhiêu người?
Gọi số dãy là x, số người ngồi trong mỗi dãy là y dk:...
Theo bài ra ra có xy =70 (1)
Nếu ta bớt đi 2 dãy ghế thì mỗi dãy ghế còn lại phải xếp thêm 4 người ngồi mới đủ chỗ
=> (x-2)(y+4) = 70 (2)
Từ (1) và (2) ta có hệ phương trình...................
Giải ra được x = 7 ; y = 10
em học lớp 5 nên ko bt đâu ạ
Trong một phòng họp có 70 người dự học được sắp xếp ngồi đều trên các dãy ghế. Nếu bớt đi 2 dãy ghế thì mỗi dãy ghế còn lại phải xếp thêm 4 người mới đủ chỗ ngồi. Hỏi lúc đầu phòng họp có mấy dãy ghế và mỗi dãy ghế được xếp bao nhiêu người?
Câu hỏi tương tự nha bạn
Gọi số dãy ghế ban đầu là a [a>0 ,a thuộc N]
=>Số người trên mỗi dãy ghế là : \(\frac{70}{a}\)
Khi bớt đi 2 dãy ghế => Số dãy ghế còn lại là : a-2
Số người trên mỗi dãy ghế lúc đó là : \(\frac{70}{a-2}\)
Theo bài ra ta có : \(\frac{70}{a}+4=\frac{70}{a-2}\)
=> 70[a-2]+4a[a-2]=70a =>35[a-2]+2a[a-2]=35a
=> 35a-70+2a\(^2\)-4a=35a
=> 2a\(^2\)-4a-70=0
=> \(a^2-2a-35=0=>a^2-2a+1-36=0=>\left[a-1^2\right]=36=6^2\). Có 2 trường hợp
Trường hợp 1 : a-1 = -6 => a = - 5 [loại]
Trường hợp 2 : a - 1 = 6 => a = 7
Còn đây bạn làm nốt tiếp
Vậy phòng họp lúc đầu có 7 dãy ghế và 10 người
Gọi x là số ghế lúc đầu \(\left(x\inℤ;x>2\right)\)
Ta có phương trình \(\frac{70}{x-2}-\frac{70}{x}=4\)
Giải phương trình được x = 7 ; x = -5
Chỉ có x = 7 thỏa mãn điều kiện đề bài
Vậy lúc đầu phòng họp có 7 dãy ghế và mỗi dãy có 10 người
Trong một phòng họp có 80 người ngồi họp được xếp đều ngồi trên các dãy ghế. Nếu ta bớt đi 2 dãy thì mỗi dãy còn lại phải xếp thêm 2 người mới đủ chỗ. Hỏi lúc đầu có bao nhiêu dãy ghế và mỗi dãy ghế có bao nhiêu người ngồi?
Vậy số dãy ghế ban đầu là 10 dãy và số người ngồi trên 1 dãy là 8 người.
Một hội trường có 500 ghế ngồi, người ta xếp chúng thành các dãy có số ghế như nhau. Nếu mỗi dãy có thêm 3 ghế và bớt đi 3 dãy thì số ghế trong hội trường vẫn phải bổ sung thêm 6 chiếc. Hỏi lúc đầu người ta định xếp bao nhiêu dãy ghế?
Giả sử hội trường có a dãy và b là số ghế của mỗi dãy. (a,b∈N∗a,b∈N∗).
Ta có phương trình: ab=500ab=500 và
⇒(a−3)(b+3)=506⇒ab−3b+3a−9=506⇒3(a−b)=15⇒a−b=5⇒a(a−5)=500⇔a=25⇒(a−3)(b+3)=506⇒ab−3b+3a−9=506⇒3(a−b)=15⇒a−b=5⇒a(a−5)=500⇔a=25
Vậy lúc đầu người ta định xếp 2525 dãy ghế.
1 phòng họp có 100 người được sắp xếp ngồi đều trên các dãy ghế, nếu có thêm 44 người thì phải kê thêm 2 dãy ghế và mỗi dãy ghế phải xếp thêm 2 người nữa. Hỏi lúc đầu phòng họp có bao nhiêu dãy ghế ?