Tìm số n biết 2n+1 và 3n+1 là số chính phương
Tìm số nguyên tố n biết 2n+1 và 3n+1 là số chính phương
Tìm tất cả các số chính phương có 2 chữ số : n
biết 2n+1 và 3n+1 đều là các số chính phương
10 ≤ n ≤ 99 ↔ 21 ≤ 2n+1 ≤ 201
2n+1 là số chính phương lẻ nên
2n+1∈ {25;49;81;121;169}
↔ n ∈{12;24;40;60;84}
↔ 3n+1∈{37;73;121;181;253}
↔ n=40
Vậy n=40
Do 2n+1 là số chính phương lẻ nên 2n+1 chia 8 dư 1,vậy n là số chẵn.
Vì 3n+1 là số chính phương lẻ nên 3n+1 chia 8 dư 1
3n⋮8
n⋮8 (1)
Do 2n+1 và 3n+1 đều là số chính phương lẻ có tận cùng là 1;5;9.do đó khi chia cho 5 thì có số dư là 1;0;4
Mà (2n+1)+(3n+1)=5n+2 ,do đo 2n+1 và 3n+1 khi cho cho 5 đều dư 1
n⋮5 (2)
Từ (1) và (2)n⋮40
Vậy n=40k thì ...
tìm n có hai chữ số biết 2n +1 và 3n+1 đều là số chính phương?
Tìm số tự nhiên N biết 2n +1 và 3n+1 đều là số chính phương
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
tìm n là số có 2 chữ số biết 2n+1 và 3n+1 là số chính phương
Ta có 10 <= n <= 99 nên 21 <= 2n + 1 <= 199
Tìm số chính phương lẻ trong khoảng trên ta được 2n + 1 bằng 25; 49; 81; 121; 169 tương ứng với số n bằng 12; 24; 40; 60; 84
Số 3n + 1 bằng 37; 73; 121; 181; 253. Chỉ có 121 là số chính phương. Vậy n = 40
2n+1" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">2n+1" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">8" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">1" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">n" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">3n+1" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">3n+1" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">8" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">1" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
⟹3n⋮8" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
⟺n⋮8(1)" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
2n+1" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">3n+1" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">1;5;9" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">5" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">1;0;4" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
(2n+1)+(3n+1)=5n+2" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">2n+1" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">3n+1" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">5"
Tìm số tự nhiên n có 2 chữ số biết rằng 2n+1 và 3n+1 là các số chính phương.
10 ≤ n ≤ 99
<=> 21 ≤ 2n+1 ≤ 201
2n+1 là số chính phương lẻ nên 2n+1∈ {25;49;81;121;169}
<=> n ∈{12;24;40;60;84}
<=> 3n+1∈{37;73;121;181;253}
<=> n=40
tìm n có 2 chữ số biết : 2n+1 và 3n+1 đồng thời là số chính phương
N là số tự nhiên có 2 chữ số
=> 21</ 2n+1</199
Mà 2n+1 là số chính phương ={16;25;36;49;64;81;100;121;169}
n={12;24;40;60;84}
3n+1={37;73;121;181;253}
Vì 3n+1 là số chính phương
=> 3n+1=121
<=> n=40
N ? vật N là 1 số ? cũng là một số chẵn tự nhiên :
=> 21 </2n+1<199
Mà 2n +1 là số chính phương
=> {16;25;36;49;64;81;100;121;169}
Kể từ cn số n thì tức là từ 16 đến 81 có số lẻ vào chẵn nên loại bỏ cái số đó phải loại bỏ nha
Chỉ lấy cái số sau : 12;24;40;60;84 Uầy hình như @Lê Anh Tú nên loại bỏ 50
3n + 1 ={37;73;121;181;253}
Vì 3n là số lẻ nên lấy các số lẻ :> Chị hĩu hôg
vì 3n là số chính phương nên
<=> 3n + 1 =121
<=> n=4
Tìm số tự nhiên n có hai chữ số biết rằng 2n+1 và 3n+1 đều là các số chính phương.
$2n+1$ và $3n+1$ là các số chính phương
$⇒\begin{cases}2n+1=a^2\\3n+1=b^2\end{cases}$ với $a;b∈N$
$⇒5n+2=a^2+b^2$
Lại có: một số chính phương chia 5 chỉ có số dư là $0;1$ hoặc $4$
Nên $a^2+b^2$ chỉ có thể $\equiv 0;1;4;2;3(mod 5)$
Mà $5n+2 \equiv 2(mod 5)$
$⇒\begin{cases}a^2 \equiv 1(mod 5)\\b^2 \equiv 1(mod 5)\end{cases}$
Nên $2n+1 \equiv 1 (mod 5)⇒2n \vdots 5$ Mà $(2;5)=1$
$⇒n \vdots 5$
Ta có: $2n+1=a^2⇒a^2$ lẻ
Mà số chính phương lẻ chia 4 chỉ có thể dư 1 nên
$2n+1 \equiv 1 (mod 4)$
Hay $2n \vdots 4$
$⇒n \vdots 2$
$⇒3n+1$ lẻ
Xét với $a=2k+1(k∈N)$ có $a^2=(2k+1)^2=4k^2+4k+1=4k(k+1)+1$
Mà $4k(k+1) \vdots 8$ nên $a^2 \vdots 1 (mod 8)$
nên ta có thể thấy số chính phương lẻ chia 8 dư 1
Mà $3n+1=b^2$ là số chính phương lẻ
$⇒3n+1 \equiv 1(mod 8)$
$⇒3n \vdots 8$
Mà $(3;8)=1$
Nên $n \vdots 8$
Lại có $n \vdots 5$
$(5;8)=1$
$⇒n \vdots 5.8=40$
Hay $n$ chia hết cho 40 mà $n$ có 2 chữ số
$⇒n=40$ hoặc $n=80$
với $n=80⇒$ Loại do thay vào ko t/m
$n=40$ thỏa mãn
Vậy $n=40$ thỏa mãn đề
Tìm số tự nhiên n có hai chữ số, biết rằng 2n+1 và 3n+1 đều là các số chính phương.
\(10\le n\le99\Leftrightarrow21\le2n+1\le201\)
\(2n+1\) là số chính phương lẻ nên
\(2n+1\in\left\{25;49;81;121;169\right\}\)
\(\Leftrightarrow n\in\left\{12;24;40;60;84\right\}\)
\(\Leftrightarrow3n+1\in\left\{37;73;121;181;253\right\}\)
\(\Leftrightarrow n=40\)