Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đức Lê
Xem chi tiết

Chinh phuong la so gi vay

Nguyen Thi Thanh Thao
Xem chi tiết
Kẹo dẻo
8 tháng 8 2016 lúc 13:05

10 ≤ n ≤ 99 ↔ 21 ≤ 2n+1 ≤ 201

2n+1 là số chính phương lẻ nên

2n+1∈ {25;49;81;121;169}

↔ n ∈{12;24;40;60;84}

↔ 3n+1∈{37;73;121;181;253}

↔ n=40

 Vậy n=40

Nguyễn Thị Anh
8 tháng 8 2016 lúc 13:00

Do 2n+1 là số chính phương lẻ nên 2n+1 chia 8 dư 1,vậy n là số chẵn.
Vì 3n+1 là số chính phương lẻ nên 3n+1 chia 8 dư 1
3n8
n8              (1)
Do 2n+1 và 3n+1 đều là số chính phương lẻ có tận cùng là 1;5;9.do đó khi chia cho 5 thì có số dư là 1;0;4
Mà (2n+1)+(3n+1)=5n+2 ,do đo 2n+1 và 3n+1 khi cho cho 5 đều dư 1
n5                (2)
Từ (1) và (2)n40
Vậy n=40k thì ... 

nguyễn thị quỳnh nhi
Xem chi tiết
Thanh Ngô Thi
Xem chi tiết
Nguyễn Phương Hiền Thảo
28 tháng 12 2015 lúc 20:10

Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

Nguyễn Đăng Khoa
Xem chi tiết
Nguyễn Đăng Khoa
4 tháng 10 2016 lúc 20:13

nỏ biết

do binh minh
8 tháng 12 2016 lúc 12:37

Ta có 10 <= n <= 99 nên 21 <= 2n + 1 <= 199
Tìm số chính phương lẻ trong khoảng trên ta được 2n + 1 bằng 25; 49; 81; 121; 169 tương ứng với số n bằng 12; 24; 40; 60; 84
Số 3n + 1 bằng 37; 73; 121; 181; 253. Chỉ có 121 là số chính phương. Vậy n = 40

Bexiu
3 tháng 5 2017 lúc 14:41

2n+1" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">2n+1" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">8" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">1" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">n" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">3n+1" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">3n+1" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">8" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">1" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
&#x27F9;3n&#x22EE;8" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
&#x27FA;n&#x22EE;8(1)" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
2n+1" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">3n+1" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">1;5;9" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">5" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">1;0;4" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
(2n+1)+(3n+1)=5n+2" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">2n+1" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">3n+1" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">5"

Pham Hoang Giang
Xem chi tiết
Đoàn Trần Quỳnh Hương
12 tháng 1 2023 lúc 20:23

10 ≤ n ≤ 99

<=>  21 ≤ 2n+1 ≤ 201

2n+1 là số chính phương lẻ nên 2n+1∈ {25;49;81;121;169}

<=> n ∈{12;24;40;60;84}

<=> 3n+1∈{37;73;121;181;253}

<=> n=40 

hồ anh tú
Xem chi tiết
Lê Anh Tú
31 tháng 12 2017 lúc 18:31

N là số tự nhiên có 2 chữ số 

=> 21</ 2n+1</199

Mà 2n+1 là số chính phương ={16;25;36;49;64;81;100;121;169}

n={12;24;40;60;84}

3n+1={37;73;121;181;253}

Vì 3n+1 là số chính phương

=> 3n+1=121

<=> n=40

Darlingg🥝
10 tháng 8 2019 lúc 15:47

N ? vật N là 1 số ? cũng là một số chẵn tự nhiên :

=> 21 </2n+1<199

Mà  2n +1 là số chính phương 

=> {16;25;36;49;64;81;100;121;169}

Kể từ cn số n thì tức là từ 16 đến 81 có số lẻ vào chẵn nên loại bỏ cái số đó phải loại bỏ nha

Chỉ lấy cái số sau : 12;24;40;60;84 Uầy hình như @Lê Anh Tú nên loại bỏ 50

3n + 1 ={37;73;121;181;253}

Vì 3n là số lẻ nên lấy các số lẻ :> Chị hĩu hôg

vì 3n là số chính phương nên 

<=> 3n + 1 =121

<=> n=4

Thang Tran
Xem chi tiết
ntkhai0708
22 tháng 3 2021 lúc 23:07

$2n+1$ và $3n+1$ là các số chính phương

$⇒\begin{cases}2n+1=a^2\\3n+1=b^2\end{cases}$ với $a;b∈N$

$⇒5n+2=a^2+b^2$ 

Lại có: một số chính phương chia 5 chỉ có số dư là $0;1$ hoặc $4$

Nên $a^2+b^2$ chỉ có thể $\equiv 0;1;4;2;3(mod 5)$

Mà $5n+2 \equiv 2(mod 5)$

$⇒\begin{cases}a^2 \equiv 1(mod 5)\\b^2 \equiv 1(mod 5)\end{cases}$

Nên $2n+1 \equiv 1 (mod 5)⇒2n \vdots 5$ Mà $(2;5)=1$

$⇒n \vdots 5$

Ta có: $2n+1=a^2⇒a^2$ lẻ

Mà số chính phương lẻ chia 4 chỉ có thể dư 1 nên
$2n+1 \equiv 1 (mod 4)$

Hay $2n \vdots 4$

$⇒n \vdots 2$

$⇒3n+1$ lẻ

Xét với $a=2k+1(k∈N)$ có $a^2=(2k+1)^2=4k^2+4k+1=4k(k+1)+1$

Mà $4k(k+1) \vdots 8$ nên $a^2 \vdots 1 (mod 8)$

nên ta có thể thấy số chính phương lẻ chia 8 dư 1

Mà $3n+1=b^2$ là số chính phương lẻ

$⇒3n+1 \equiv 1(mod 8)$

$⇒3n \vdots 8$

Mà $(3;8)=1$

Nên $n \vdots 8$

Lại có $n \vdots 5$

$(5;8)=1$

$⇒n \vdots 5.8=40$

Hay $n$ chia hết cho 40 mà $n$ có 2 chữ số

$⇒n=40$ hoặc $n=80$

với $n=80⇒$ Loại do thay vào ko t/m

$n=40$ thỏa mãn

Vậy $n=40$ thỏa mãn đề

Vũ Ngọc Diệp
Xem chi tiết
HT.Phong (9A5)
1 tháng 3 2023 lúc 19:29

\(10\le n\le99\Leftrightarrow21\le2n+1\le201\)

\(2n+1\) là số chính phương lẻ nên

\(2n+1\in\left\{25;49;81;121;169\right\}\)

\(\Leftrightarrow n\in\left\{12;24;40;60;84\right\}\)

\(\Leftrightarrow3n+1\in\left\{37;73;121;181;253\right\}\)

\(\Leftrightarrow n=40\)