Cho hình vuông ABCD. Gọi I,K lần lượt là trung điểm của AD và DC. Chứng minh rằng BI ⊥ AK.
Cho hình vuông ABCD. Gọi I,K lần lượt là trung điểm của AD và DC. Chứng minh rằng BI ⊥ AK.
Xét Δ BAI và Δ ADK có:
⇒ Δ BAI = Δ ADK ( c - g - c )
1: Cho hình vuông ABCD . Gọi I,K lần lượt là trung điểm của AD và DC.
a) Chứng minh rằng BI ⊥ AK.
b) Gọi E là giao điểm của BI và AK. Chứng minh rằng CE = AB.
Cho hình vuông ABCD. Gọi I,K lần lượt là trung điểm của AD và DC. Gọi E là giao điểm của BI và AK. Chứng minh rằng CE = AB.
Cho hình vuông ABCD. Gọi I,K lần lượt là trung điểm của AD và DC. Gọi E là giao điểm của BI và AK. Chứng minh rằng CE = AB.
Bài 1: Cho hình vuông ABCD. Gọi I,K lần lượt là trung điểm của AD và DC.
a) Chứng minh rằng BI ⊥ AK.
b) Gọi E là giao điểm của BI và AK. Chứng minh rằng CE = AB.
a, Vì \(\left\{{}\begin{matrix}AD=AB\\AI=DK\left(\dfrac{1}{2}AD=\dfrac{1}{2}DC\right)\\\widehat{BAD}=\widehat{ADK}=90^0\end{matrix}\right.\) nên \(\Delta AIB=\Delta DKA\left(c.g.c\right)\)
\(\Rightarrow\widehat{ABI}=\widehat{DAI}\\ \Rightarrow\widehat{DAI}+\widehat{AIB}=\widehat{ABI}+\widehat{AIB}=90^0\\ \Rightarrow BI\perp AK\)
Cho hình bình hành ABCD. Gọi I và K lần lượt là trung điểm của AB, CD. Đường chéo BD cắt AK, AI lần lượt tại M, N. Chứng minh rằng: AK//CI
Áp dụng định nghĩa, tính chất và theo giả thiết của hình bình hành, ta có:
Tứ giác AICK có cặp cạnh đối song song và bằng nhau nên AICK là hình bình hành.
Cho hình thang ABCD (AB // CD). Gọi E, F lần lượt là trung điểm của AD, BC. Đường thăng EF cắt BC, AC lần lượt tại I, K.
a) Chứng minh AK = KC, BI = ID.
b) Chứng minh EI =KF.
c) Cho AB = 6cm, CD = 10cm. Tính các độ dài EI, KF, IK.
d) Chứng minh K, E, F thẳng hàng.❤❤><
a: Xét hình thang ABCD có
E là trung điểm của AD
F là trung điểm của BC
Do đó: EF là đường trung bình của hình thang ABCD
Suy ra: EF//AB//CD
Xét ΔADC có
E là trung điểm của AD
EK//DC
Do đó: K là trung điểm của AC
hay KA=KC
Xét ΔBDC có
F là trung điểm của BC
FI//DC
Do đó: I là trung điểm của BD
hay IB=ID
Cho hình vuông ABCD gọi I, K lần lượt là trung điểm của AD và DC.
a) Chứng minh BI vuông góc với AK.
b) Gọi E là giao điểm của BI và AK. Chứng minh CE=AB.
Giúp tớ các bạn!
Bài 8 : Cho hình thang ABCD (AB//CD) có CD = 2AB. Gọi M, N, I lần lượt là trung điểm của AD, BC, DC. Gọi K là giao điểm của MN và AC. a/ Chứng minh K là trung điểm của AC. b/ Chứng minh AB = MK. c/ Chứng minh B, K, I thẳng hàng.