Cho m < n, chứng tỏ: 4m + 1 < 4n + 5
Cho m<n .Chứng tỏ
a) 2m+1<2n+1
b) 4(m-2)<4(n-2)
c) 3-6m>3-6n
d) 4m+1<4n+5
a. Ta có: m<n
<=> 2m<2n (nhân cả hai vế với 2)
<=> 2m+1<2n+1 (cộng cả hai vế với 1) \(\xrightarrow[]{}\) đpcm
b. Ta có: m<n
<=> m-2<n-2 (cộng cả hai vế với -2)
<=> 4(m-2)<4(n-2) (nhân cả hai vế với 4) \(\xrightarrow[]{}\) đpcm
c. Ta có: m<n
<=> -6m>-6n (nhân cả hai vế với -6)
<=> 3-6m>3-6n (cộng cả hai vế với 3) \(\xrightarrow[]{}\) đpcm
d. Ta có: m<n
<=> 4m<4n (nhân cả hai vế với 4)
<=> 4m+1<4n+1 (cộng cả hai vế với 1)
mà 4n+1<4n+5
=> 4m+1<4n+5 \(\xrightarrow[]{}đpcm\)
Cho m < n. Chứng tỏ : 4m +1 < 4n +5
Help meeeeeeeeee
Theo đề bài, ta có: m < n
=> m + m + m + m < n + n + n + n
hay 4m < 4n
Mà 4m < 4n nên 4m + 1 < 4n +1
=> 4m + 1 < 4n +5
Vậy 4m + 1 < 4n +5
Cho \(m< n\), chứng tỏ :
a) \(4m+1< 4n+5\)
b) \(3-5m>1-5n\)
a, Ta có: \(m< n\Leftrightarrow4m< 4n\) (nhân cả hai vế với 4)
\(\Leftrightarrow4m+1< 4n+1\) (cộng cả hai vế với 1)
mà 1<5 \(\Leftrightarrow4n+1< 4n+5\)
\(\Rightarrow4m+1< 4n+5\)
b. Ta có: \(m< n\Leftrightarrow-5m>-5n\) (nhân cả hai vế với -5)
\(\Leftrightarrow3-5m>3-5n\) (cộng cả hai vế với 3)
mà 1<3 \(\Leftrightarrow1-5n< 3-5n\)
\(\Rightarrow3-5m>1-5n\)
Cho m> n hãy so sánh
a, -8m + 2 với -8n +2
b, 6n-1 với 6m +2
cho m <n chứng tỏ -4m +3 > -4n +2
Giải chi tiết ra cho em vs nhé
a) -8m + 2
Vì m>n mà số nguyên âm nào có trị tuyệt đối lớn hơn thì bé hơn nên suy ra ta có:
-8m + 2 < - 8n + 2
b) 6n - 1 với 6m + 2
6n - 1 < 6m + 2
Chứng minh rằng 24n+1 + 34m+1 chia hết cho 5 với mọi n, m thuộc N
Ta có: 24n+1 + 34m+1
= 24n.2 + 34m.3
= (24)n.2 + (34)m.3
= (...6)n.2 + (...1)m.3
= (...6).2 + (...1).3
= (...2) + (...3)
= ...5
Vì ...5⋮5 nên 24n+1+34m+1⋮5
Vậy 24n+1+34m+1⋮5
Ta có: 24n+1 + 34m+1
= 24n.2 + 34m.3
= (24)n.2 + (34)m.3
= (...6)n.2 + (...1)m.3
= (...6).2 + (...1).3
= (...2) + (...3)
= ...5
Vì \(\overline{...5}⋮5\) nên \(2^{4n+1}+3^{4m+1}⋮5\)
Vậy \(2^{4n+1}+3^{4m+1}⋮5\)
bài 1:tìm hai số tự nhiên a và b (a > b) có BCNN bằng 240 và UCLN bằng 12
a) tìm ƯCLN ( 3n+1,4n+1) và chứng tỏ 3n+1 và 4n +1 là số nguyên tố cùng nhau
bài 2 : cho M= 5+5^2+5^3+...+5^80
a) Chứng minh 4m+5 chia hết 5^80
b) M không là SCP
Cho Biểu thức A*= (4m-1)(n-4)-(m-4)(4n-1)
Chứng minh A* chia hết cho 15 với mọi m,n thuộc Z
\(\left(4m-1\right)\left(n-4\right)-\left(m-4\right)\left(4n-1\right)\)= 4mn-16m-n+4-4mn+m+16n=15n-15m=15(n-m)
Thấy 15 chia hết cho 5 => 15(m+n) chia hết cho 5 với mọi x
Nhầm xíu, Vậy A* chia hết cho 15 với mọi m,n thuộc Z
Cho m, n là các số thỏa mãn : 3m2 + n = 4m2 + n. Chứng minh ( m - n ) và ( 4m + 4n + 1 ) đều là số chính phương
Lời giải:
Ta có:
\(3m^2+m=4n^2+n\)
\(\Leftrightarrow 4m^2+m=4n^2+n+m^2\)
\(\Leftrightarrow 4(m^2-n^2)+(m-n)=m^2\)
\(\Leftrightarrow (m-n)(4m+4n+1)=m^2\)
Đặt $d$ là ước chung lớn nhất của $m-n$ và $4m+4n+1$
\(\Rightarrow \left\{\begin{matrix} m-n\vdots d\\ 4m+4n+1\vdots d\end{matrix}\right.\Rightarrow \left\{\begin{matrix} m^2=(m-n)(4m+4n+1)\vdots d^2\\ 4(m-n)+(4m+4n+1)\vdots d\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} m\vdots d\\ 8m+1\vdots d\end{matrix}\right.\Rightarrow 1\vdots d\Rightarrow d=1\)
Vậy $m-n, 4m+4n+1$ nguyên tố cùng nhau. Mà tích của chúng là 1 số chính phương nên bản thân $m-n, 4m+4n+1$ cũng là các số chính phương (đpcm).
Lời giải:
Ta có:
\(3m^2+m=4n^2+n\)
\(\Leftrightarrow 4m^2+m=4n^2+n+m^2\)
\(\Leftrightarrow 4(m^2-n^2)+(m-n)=m^2\)
\(\Leftrightarrow (m-n)(4m+4n+1)=m^2\)
Đặt $d$ là ước chung lớn nhất của $m-n$ và $4m+4n+1$
\(\Rightarrow \left\{\begin{matrix} m-n\vdots d\\ 4m+4n+1\vdots d\end{matrix}\right.\Rightarrow \left\{\begin{matrix} m^2=(m-n)(4m+4n+1)\vdots d^2\\ 4(m-n)+(4m+4n+1)\vdots d\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} m\vdots d\\ 8m+1\vdots d\end{matrix}\right.\Rightarrow 1\vdots d\Rightarrow d=1\)
Vậy $m-n, 4m+4n+1$ nguyên tố cùng nhau. Mà tích của chúng là 1 số chính phương nên bản thân $m-n, 4m+4n+1$ cũng là các số chính phương (đpcm).
chứng tỏ moị số n:
a. (7^4n - 1) chia hết cho 5
b.(3^4n + 1) chia hết cho 5
với n thuộc n.chứng tỏ (2012^4n-3 +3) chia hết cho 5