Gọi C là điểm thuộc AB. Trên nửa mặt phẳng bở AB vẽ các tam giác đều ACD; BCE. Xác định vị trí của C để DE có độ dài nhỏ nhất
Gọi C là điểm bất kì nằm trên đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB, vẽ các tam giác đều ACD, BCE. Tìm vị trí của điểm C để DE có độ dài nhỏ nhất?
Cho đoạn thằng AB lấy điểm C sao cho AC > BC. Trên cùng 1 nửa mặt phẳng bờ AB vẽ các tam giác đều ACD và BCE. Gọi M,N,P,Q lần lượt là trung điểm của AE,CD,BD,CE
1, Tứ giác MNPQ là hình gì
2, CM: 2MN = DE
MQ // AC (đường TB của tam giác EAC)
NP // CB (đường TB của tam giác DCB)
=> MQ // NP (vì A, C, B thẳng hàng)
=> MNPQ là hình thang
Gọi L là trung điểm DE.
Ta có LN // CE (1) (đường trung bình của tam giác DCE).
Lại có: LM // DA (2) (đường TB tam giác EAD)
Mà: AD // CE (3) (Vì góc DAC = góc ECB = 60 độ, và 2 góc này đồng vị)
Từ (1), (2) , (3) suy ra M; N; L thẳng hàng
=> MN // AD
Mà MQ // AB (c/m trên)
góc NMQ = góc DAC = 60 độ
Tương tự c/m được góc PQM = 60 độ
=> hình thang MNPQ có 2 góc kề 1 đáy bằng nhau nên là hinh thang cân
Cho đoạn thằng AB lấy điểm C sao cho AC > BC. Trên cùng 1 nửa mặt phẳng bờ AB vẽ các tam giác đều ACD và BCE. Gọi M,N,P,Q lần lượt là trung điểm của AE,CD,BD,CE
1, Tứ giác MNPQ là hình gì
2, CM: 2MP = DE
CHO BA ĐIỂM A, C, B THẲNG HÀNG THEO THỨ TỰ ĐÓ. TRÊN CÙNG MỘT NỬA MẶT PHẲNG CÓ BỜ AB, VẼ CÁC TAM GIÁC ACD, BCE. GỌI I, K THEO THỨ TỰ LÀ TRUNG ĐIỂM CỦA AE VÀ BD.
CM: TAM GIÁC CIK LÀ TAM GIÁC ĐỀU.
GỢI Ý: ĐI CM TAM GIÁC CIK CÂN VS CÓ MỘT GÓC = 60 ĐỘ
( Hình vẽ chỉ mang tính chất minh họa )
Lời giải :
+) Do \(\Delta ADC,\Delta BCE\) đều \(\Rightarrow\hept{\begin{cases}AD=DC=AC,\widehat{DAC}=\widehat{ACD}=\widehat{CDA}=60^o\\CE=CB=BE,\widehat{ECB}=\widehat{CBE}=\widehat{BEC}=60^o\end{cases}}\)
+) Xét \(\Delta ACE\) và \(\Delta DCB\) có :
\(\hept{\begin{cases}AC=DC\left(cmt\right)\\\widehat{ACE}=\widehat{DCB}\left(=60^o+\widehat{DCE}\right)\\CE=CB\left(cmt\right)\end{cases}}\)
\(\Rightarrow\Delta ACE=\Delta DCB\left(c-g-c\right)\)
\(\Rightarrow\hept{\begin{cases}AE=DB\\\widehat{AEC}=\widehat{DBC}\Rightarrow\widehat{IEC}=\widehat{KBC}\end{cases}}\)
+) Ta thấy : I, K lần lượt là trung điểm của AE và BD
\(\Rightarrow\hept{\begin{cases}AI=TE=\frac{AE}{2}\\DK=KB=\frac{DB}{2}\end{cases}}\) mà \(AE=DB\left(cmt\right)\)
\(\Rightarrow IE=KB\)
+) Xét \(\Delta IEC\) và \(\Delta KBC\) có :
\(\hept{\begin{cases}IE=KB\left(cmt\right)\\\widehat{IEC}=\widehat{KBC}\left(cmt\right)\\CE=CB\left(cmt\right)\end{cases}}\)
\(\Rightarrow\Delta IEC=\Delta KBC\left(c-g-c\right)\)
\(\Rightarrow\hept{\begin{cases}IC=KC\\\widehat{ICE}=\widehat{KCB}\end{cases}}\)
+) Ta có : \(\widehat{ECB}=\widehat{KCB}+\widehat{ECK}=60^o\)
\(\Rightarrow\widehat{ICE}+\widehat{ECK}=60^o\)
hay \(\widehat{ICK}=60^o\)
+) Xét \(\Delta CIK\) có: \(IC=CK\left(cmt\right)\)
\(\Rightarrow\Delta CIK\) là tam giác cân tại C. Mà : \(\widehat{ICK}=60^o\)
\(\Rightarrow\Delta CIK\) là tam giác đều.
Trên AB lấy C ( AC > CB ). Trên cùng nửa mặt phẳng bờ AB vẽ các tam giác đều ACD, BCE. Gọi M, N, P, Q lần lượt là trung điểm AE, BD, CE.
a, Tứ giác MNPQ là hình gì?
b, CM: MP = 1/2 DE
Cho đoạn thằng AB lấy điểm C sao cho AC > BC. Trên cùng 1 nửa mặt phẳng bờ AB vẽ các tam giác đều ACD và BCE. Gọi M,N,P,Q lần lượt là trung điểm của AE,CD,BD,CE
1, Tứ giác MNPQ là hình gì
2, CM: 2MN = DE
Help T.T
Cho đoạn thẳng AB và điểm C nằm giữa A và B. Trên cùng một nửa mặt phẳng bờ AB vẽ 2 tam giác đều ACD và BEC. Gọi M, N lần lượt là trung điểm của AE và BD. Chứng minh :
a) AE=BD
b) Tam giác MCN là tam giác đều
Câu hỏi của Đông Phí Mạnh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
Cho điểm M thuộc đoạn thẳng AB. Trên cùng 1 nửa mặt phẳng bờ AB, vẽ các tam giác đều AMC, BMD. Gọi E,F theo thứ tự là trung điểm của AD,CB.
CMR; TAM GIÁC MEF là tam giác đều