Cho tam giác ABC có AC > AB. So sanh hai góc ngoài tại các đỉnh B và C.
Tam giác ABC có AC > AB. Só sánh hai góc ngoài tại các đỉnh B và C
\(AC>AB\Rightarrow\widehat{B}>\widehat{C}\Rightarrow180^0-\widehat{B}< 180^0-\widehat{C}\Rightarrow\)Góc ngoài tại đỉnh B nhỏ hơn góc ngoài tại đỉnh C
Cho tam giác ABC có AB = 5cm AC = 3 cm
a) So sánh góc B với góc C
b) So sánh 2 góc ngoài tại đỉnh B và C của tam giác ABC
a: Xét ΔABC có AB>AC
nên \(\widehat{B}< \widehat{C}\)
b: Vì \(\widehat{B}< \widehat{C}\)
nên góc ngoài tại đỉnh B lớn hơn góc ngoài tại đỉnhC
Cho tam giác ABC có AB < AC, tia phân giác của góc A cắt BC tại D. Trên cạnh AC lấy điểm E sao cho AB=AE
. So sánh góc (DEC) và góc ngoài tại đỉnh B của tam giác ABC
b. Giả sử góc ngoài tại đỉnh B của tam giác ABC là ∠(xBC). Ta có:
∠(xBC) + ∠(ABD) = 180o ⇒ ∠(xBC) = 180o - ∠(ABD) (0.5 điểm)
∠(DEC) + ∠(AED) = 180o ⇒ ∠(DEC) = 180o - ∠(AED) (0.5 điểm)
Mà ∠(ABD) = ∠(AED) ( hai góc tương ứng vì ΔABD = ΔAED)(0.5 điểm)
Từ đó suy ra ∠(xBC) = ∠(DEC) (0.5 điểm)
Cho tam giác ABC có AC>AB . So sánh 2 góc ngoài tại đỉnh B và đỉnh C
GIÚP MK VS MAI MK CẦN
Xét tam giác ABC có AC>AB
=>\(\widehat{ACB}\) >\(\widehat{ABC}\) (T/C góc và cạnh đối diện)
mà \(\widehat{ACB}\) + góc ngoài tại đỉnh C=180 độ
mà \(\widehat{ABC}\) + góc ngoài tại đỉnh B = 180 độ
=> Góc ngoài tại đỉnh C>góc ngoài tại đỉnh B
Cho tam giác ABC. Hai tia phân giác của góc ngoài tại đỉnh B và đỉnh C cắt nhau tại I. Chứng minh điểm I cách đều hai cạnh AB, AC.
Gọi E, F, P lần lượt là hình chiếu của I trên các đường thẳng AB, BC, CA.
Theo Định lí thuận ta có IE = IF và IF = IP => IE = IP .
Vậy I cách đều hai cạnh AB, AC.
cho tam giác abc, hai đường phân giác của góc ngoài tại đỉnh B và đỉnh C cắt nhau tại I. Chứng minh I cách đều hai cạnh AB, AC (vẽ hình và ghi GT KL)
Tham khảo
Gọi E, F, P lần lượt là hình chiếu của I trên các đường thẳng AB, BC, CA.
Theo Định lí thuận ta có IE = IF và IF = IP => IE = IP .
Vậy I cách đều hai cạnh AB, AC.
Bài 2: Cho tam giác ABC có góc A>90 độ , lấy điểm M thuộc cạnh AB .
a) So sánh AC và MC
b) Chứng minh tam giác MBC là tam giác tù
c) Chứng minh AC <MC <BC
Bài 3: Cho tam giác MNP có Góc N>90 độ , trên tia đối của tia NP lấy điểm Q .
a) So sánh MN và MP
b) Chứng minh tam giác MPQlà tam giác tù.
c) Chứng minh MN<MP<MQ
Bài 4: Cho tam giác ABC có AB=3 cm, AC=4 cm
a) So sánh góc B với gócC
b) Hạ AH vuông góc với BC tại H . So sánh góc BAH và góc CAH
Bài 5: Cho tam giác ABC có AB = 5 cm, AC = 3 cm
a) So sánh góc B với góc C
b) So sánh hai góc ngoài tại các đỉnh B và C của tam giác ABC
Bài 6: Cho tam giác ABC vuông tại A có AC=2AB . Lấy điểm E trên cạnh AC sao cho
AB=AE . Trên tia đối của tia EB lấy điểm D sao cho EB=ED
a) Chứng minh tam giác ABE= tam giác CDE
b) So sánh góc ABE và góc CBE
Cho tam giác ABC có góc A là góc tù. Gọi B' , C' theo thứ tự là hai điểm trên hai cạnh AB, AC của tam giác ABC (B', C' không trùng với các đỉnh của tam giác). So sánh B'C' và BC.