Cho tam giác cân tại A. Kẻ AD vuông góc với BC. Chứng minh rằng AD là tia phân giác của góc A
Cho tam giác ABC cân tại A. Kẻ AD vuông góc với BC. Chứng minh rằng AD là tia phân giác của góc A ?
C1: Xét \(\Delta ABD\) và \(\Delta ACD\) có:
AD (chung)
\(\widehat{ADB}=\widehat{ADC}\) ( = 900)
AB = AC ( \(\Delta ABC\)cân tại A )
Do đó: \(\Delta ABD=\Delta ACD\) (cạnh huyền - cạnh góc vuông)
Cho tam giác ABC vuông tại A. Từ A kẻ AH vuông góc với BC tại H, tia phân giác của góc CAH cắt BC. Chứng minh rằng:
a) Tam giác ABD cân
b) Các tia phân giác của góc BAH và BHA cắt nhau tại I. Gọi M là trung điểm của AD. Chứng minh B, I, M thẳng hàng
c) Gọi N trung điểm của BC. Chứng minh 2AN = BC
d) A Chứng minh AB + AC = 2AM
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC tại H. Kẻ tia phân giác AD của góc BAH tại D.
a) Chứng minh rằng : Góc BAH = góc C , góc CAH = góc B
b) Chứng minh rằng : Góc DAC = góc ADC
c) Kẻ tia phân giác của góc C cắt AD tại K. Chứng minh rằng CK vuông góc với AD .
Bạn tham khảo ở đây:
Câu hỏi của ngô thị gia linh - Toán lớp 7 - Học toán với OnlineMath
Ai giúp bạn này với, tiện thể giúp luôn cả mình nhé. Cô Trần THị Loan ơi giúp bọn em ạ
Cho ABC cân tại A. kẻ AD vuông góc với BC. Chứng minh AD là tia phân giác của góc A.
xét 2 tam giác vuông BAD và CAD có :AD : cạnh chungAB = AC ( vì tam giác ABC cân tại A )=> tam giác BAD = tam giác CAD ( cạnh huyền - cạnh góc vuông)=> ^BAD = ^CAD ( 2 góc tương ứng )=> AD là tia phân giác của góc A
Cho tam giác ABC cân tại BC can tai A và AD là phân giác của góc BAC . Từ D kẻ DE vuông góc với AB và DF vuông góc với AC a) Chứng Minh Rằng AD là đường trung trực của BC
Xét tam giác ABC cân tại A có:
AD là phân giác của góc BAC (gt).
\(\Rightarrow\) AD là đường trung trực của BC (Tính chất tam giác cân).
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cách AC tại D. Từ D kẻ DH vuông góc với BC (H€BC) và DH cách AB tại K a) Chứng minh AD =DH b) So sánh độ dài cạnh AD và BC c) Chứng minh tam giác KBC là tam giác cân
Cho tam giác ABC cân A . Kẻ AD vuông góc với BC . Chứng minh AD là tia phân giác góc A
Xét tam giác ABD vuông tại D và tam giác ACD vuông tại D có:
AB = AC (tam giác ABC cân tại A)
B = C (tam giác ABC cân tại A)
=> Tam giác ABD = Tam giác ACD (cạnh huyền - góc nhọn)
=> BAD = CAD (2 góc tương ứng)
=> AD là tia phân giác của A
cho tam giác ABC cân tại A, AD là tia phân giác của góc BAC (D thuộc BC ). a, Chứng minh tam giác ADB = tam giác ADC b, Chứng minh AD vuông góc BC c, Kẻ DM vuông góc AB ,DN vuông góc AC. Chứng minh AM = AN. d, Chứng minh MN // BC.
Cho tam giác ABC vuông tại B, đường phân giác AD (D thuộc BC). Kẻ BO vuông góc với AD (O thuộc AD), BO cắt AC tại E. Chứng minh rằng: a, Tam giác ABO= tam giác AEO b,Tam giác BAE là tam giác cân c, AD là đường trung trực của BE d, Kẻ BK vuông góc với AC (K thuộc AC). Gọi M là giao điểm của BK và AD. Chứng minh rằng ME song song với BC
giúp mik nha ! ~ akari ~
tks mấy bạn nhìu !
a) Xét ΔABO vuông tại O và ΔAEO vuông tại O có
AO chung
\(\widehat{BAO}=\widehat{EAO}\)(AO là tia phân giác của \(\widehat{BAE}\))
Do đó: ΔABO=ΔAEO(cạnh góc vuông-góc nhọn kề)
b) Ta có: ΔABO=ΔAEO(cmt)
nên AB=AE(Hai cạnh tương ứng)
Xét ΔABE có AB=AE(cmt)
nên ΔABE cân tại A(Định nghĩa tam giác cân)
c) Xét ΔABD và ΔAED có
AB=AE(cmt)
\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAE}\))
AD chung
Do đó: ΔABD=ΔAED(c-g-c)
Suy ra: DB=DE(Hai cạnh tương ứng)
Ta có: AB=AE(cmt)
nên A nằm trên đường trung trực của BE(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: DB=DE(cmt)
nên D nằm trên đường trung trực của BE(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AD là đường trung trực của BE(Đpcm)