Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thaonguyen
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 5 2018 lúc 6:42

a) Chú ý m > 2 thì m > 0.

b) Chú ý a < 0 và b < 0 thì ab > 0. Khi đó a > b, nhân hai vế với 1 ab > 0  ta thu được  1 b > 1 a . Tương tự a > 0, b > 0, a > b ta được  1 a < 1 b .

thaonguyen
Xem chi tiết
Trương Huy Hoàng
29 tháng 4 2020 lúc 7:43

1, Vì m > 2

\(\Rightarrow\) m - 2 > 2 - 2

\(\Rightarrow\) m(m - 2) > m(2 - 2)

\(\Rightarrow\) m2 - 2m > 0

a < 0; b < 0; a > b

\(\Rightarrow\) \(\frac{1}{a}< \frac{1}{b}\) (Vì mẫu a > b nên phân số \(\frac{1}{a}< \frac{1}{b}\))

Bạn ơi, đề cho a > b thì làm sao chứng minh được a \(\ge\) b hả bạn

Chúc bn học tốt!!

Nguyễn Phạm Vân Thi
Xem chi tiết
Đường Bảo Bảo
11 tháng 3 2017 lúc 21:38

a vì a+2>5 =>a+2+(-2)>5+(-2)=>a+2>3

b vì a>3 => a+2>3+2  =>a+2>5

c  vì m>n =>m-n>n-n=>m-n>0

đ vì m-n=0 =>m-n+n>0+n=>m>n

e vì m<n nên m+(-4)<n+(-4) =>m-4<n-4 (1)

  vì -4>-5 => m-4>m-5 (2)

từ (1) và (2) =>m-5<n-4

Lê Mxxx Vxx
Xem chi tiết
trần thị hương
Xem chi tiết
Trương Ngọc Tiểu Phụng
Xem chi tiết
Hoàng Lê Bảo Ngọc
29 tháng 5 2016 lúc 9:48

Đề bài : Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\left(a,b,c\ne0\right)\)và  \(M=\frac{b^2c^2}{a}+\frac{c^2a^2}{b}+\frac{a^2b^2}{c}\)

Chứng minh M=3abc.

Trước tiên, ta chứng minh bài toán phụ : Cho x+y+z=0 . Chứng minh \(x^3+y^3+z^3=3xyz\)

Giải bài toán phụ như sau : Ta có : \(x+y+z=0\Rightarrow z=-\left(x+y\right)\Rightarrow z^3=-\left[x^3+y^3+3xy\left(x+y\right)\right]\)

\(\Rightarrow x^3+y^3+z^3=-3xy\left(x+y\right)=-3xy\left(-z\right)\)

\(\Rightarrow x^3+y^3+z^3=3xyz\)

Áp dụng vào bài đã cho, ta suy ra : \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

Do đó : \(M=\frac{b^2c^2}{a}+\frac{c^2a^2}{b}+\frac{a^2b^2}{c}=\frac{a^2b^2c^2}{a^3}+\frac{a^2b^2c^2}{b^3}+\frac{a^2b^2c^2}{c^3}=a^2b^2c^2\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=a^2b^2c^2.\frac{3}{abc}=3abc\)Vậy \(M=3abc\)(đpcm)

Trương Ngọc Tiểu Phụng
29 tháng 5 2016 lúc 21:20

Cảm ơn bạn nha :*

Hoàng Lê Bảo Ngọc
30 tháng 5 2016 lúc 10:45

Không có chi :))

Chúc bạn học tốt ! ^.^

Lee Yeong Ji
Xem chi tiết
Xyz OLM
17 tháng 4 2022 lúc 11:35

Ta có \(M=\dfrac{a^2}{a+b}+\dfrac{b^2}{a+b}\ge\dfrac{\left(a+b\right)^2}{2\left(a+b\right)}\)(BĐT Schwarz) 

\(=\dfrac{a+b}{2}=1\)

 "=" <=> a = b = 1 (không thỏa mãn điều kiện) 

=> "=" không xảy ra => M > 1(ĐPCM)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 4 2018 lúc 10:01

Thực hiện quy đồng:  a b = a b + m b b + m = a b + a m b 2 + b m

a + m b + m = b a + m b b + m = a b + b m b 2 + b m

Vì  a b < 1 ⇒ a < b ⇒ a b + a m < a b + b m

Từ đó ta thu được  a b < a + m b + m