Cho tam giác ABC có các góc A = 35 o , C = 65 o . Tìm cạnh nhỏ nhất của tam giác.
A. Cạnh AB
B. Cạnh BC
C. Cạnh CA
D. AB và CA
Cho tam giác ABC nội tiếp đường tròn (O) có bán kính R = 6 và có các góc \(\widehat B = {65^o},\widehat C = {85^o}.\) Tính độ dài cạnh BC.
Ta có: \(\widehat B = {65^o},\widehat C = {85^o}.\)
\( \Rightarrow \widehat A = {180^o} - \left( {{{65}^o} + {{85}^o}} \right) = {30^o}.\)
Áp dụng định lí sin trong tam giác ABC, ta có:
\(\frac{{BC}}{{\sin A}} = 2R \Rightarrow BC = 2R.\sin A\)
Mà \(\widehat A = {30^o},R = 6.\)
\( \Rightarrow BC = 2.6.\sin {30^o} = 6.\)
Vậy BC = 6.
a) Cho tam giác DEG có góc E là góc tù. So sánh DE và DG.
b) Cho tam giác MNP có \(\widehat M = 56^\circ \), \(\widehat N = 65^\circ \). Tìm cạnh nhỏ nhất, cạnh lớn nhất của tam giác MNP.
a)
Trong tam giác DEG có góc E là góc tù (góc > 90°). Mà DG là cạnh đối diện với góc E nên DG là cạnh lớn nhất trong tam giác.
Vậy DE < DG.
b)
Tam giác MNP có \(\widehat M = 56^\circ \), \(\widehat N = 65^\circ \). Mà tổng ba góc trong một tam giác bằng 180°. Vậy \(\widehat P = 180^\circ - 56^\circ - 65^\circ = 59^\circ \).
Ta thấy: \(\widehat M < \widehat P < \widehat N\). Hay cạnh nhỏ nhất của tam giác MNP là NP (đối diện với góc M), cạnh lớn nhất của tam giác MNP là MP (đối diện với góc N).
Cho tam giác ABC cân tại A. Các tia phân giác của góc B và góc C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC. Đường thẳng này cắt cạnh AB tại E và cắt cạnh AC tại F.
a) Tìm những tam giác cân có trên hình vẽ
b) Tìm những cặp tam giác cân bằng nhau
a) Ta có: EF//BC(gt) =>\(\left\{{}\begin{matrix}\text{^EOB = ^OBC (SLT)}\\\text{ ^FOC = ^OCB (SLT)}\\\text{^AEF = ^B (Đồng vị)}\\\text{^AFE = ^C (Đồng vị)}\end{matrix}\right.\)
Có: ^OBC = ^OBA ( BF là phân giác ^B)
mà: ^EOB = ^OBC (cmt)
=> ^EOB = ^OBA => tam giác EBO cân tại E
Có: ^OCA = ^OCB ( BF là phân giác ^B)
mà: ^FOC = ^OCB (cmt)
=> ^FOC = ^OCA => tam giác FCO cân tại E
Ta có: ^AEF = ^B (cmt)
^AFE = ^C (cmt)
Mà ^B = ^C (tam giác ABC cân tại A)
=> ^AEF = ^AFE => tam giác AEF cân tại A
Có : ^ABF = ^CBF = \(\dfrac{1}{2}\) ^B ( BF là phân giác ^B)
^ACE = ^BCE = \(\dfrac{1}{2}\) ^B ( CF là phân giác ^C)
mà : ^B = ^C (tam giác ABC cân tại A)
=> ^ACE = ^ABF = ^CBF = ^BCE
Xét tg OBC có: ^OBC = ^OCB (^CBF = ^BCE) => tg OBC cân tại O
Xét tam giác FCO và tam giác EBO có:
^FOC = ^FOB ( đối đỉnh)
^FCO = ^EBO (^ABF = ^ACE)
OB = OC ( tg OBC cân tại O )
=> tam giác FCO = tam giác EBO(g-c-g)
A. Phần trắc nghiệm (4 điểm)
Trong mỗi câu dưới đây, hãy chọn phương án trả lời đúng:
Cho tam giác ABC có các góc B = 70 o , C = 45 o . Tìm cạnh nhỏ nhất của tam giác.
A. Cạnh AB
B. Cạnh BC
C. Cạnh CA
D. Cạnh AB và CA
Ta có A = 180o - 70o - 45o = 65o.
Vì góc C là góc nhỏ nhất nên cạnh AB nhỏ nhất. Chọn A
Cho tam giác ABC có độ dài các cạnh A B = 5 c m , A C = 3 c m , B C = 4 c m . Tìm góc nhỏ nhất của tam giác
A. Góc A
B. Góc B
C. Góc C
D. Góc B và A
Vì AC là cạnh nhỏ nhất nên góc B là góc nhỏ nhất. Chọn B
Cho tam giác ABC có độ dài các cạnh A B = 8 c m , A C = 8 c m , B C = 6 c m . Tìm góc nhỏ nhất của tam giác?
A. Góc A
B. Góc B
C. Góc C
D. Góc C và B
Do BC là cạnh nhỏ nhất nên góc C là góc nhỏ nhất. Chọn C
Trong tam giác ABC các tia phân giác của góc B, góc C tại O
Trong tam giác BOC, cạnh nào lớn nhất
Gỉa sử OB nhỏ hơn OC hãy so sánh AB với AC
Cho tam giác ABC có AB=AC. Trên cạnh AB và AC lần lượt lấy hai điểm M và N sao cho AM=AN. Nối BN và CM gặp nhau tại O.
a) B A C ^ là góc chung của các tam giác nào?
b) BC là cạnh chung của các tam giác nào?
c) Các cặp góc nào kề bù nhau
d) Tìm các tam giác có cạnh là AO
1.Cho tam giác ABCcó độ dài các cạnh là: a,b,c . Độ dài các đường trung tuyến tương ứng là ma, mb, mc.
CM: \(\frac{a}{m_a}+\frac{b}{m_b}+\frac{c}{m_c}\ge2\sqrt{3}\)
2. Tìm MaxP= sinP + cosP
Với P là số đo góc nhọn trong tam giác ABC vuông .
3.Cho tam giác ABC có chu vi bằng 3 cm, góc A=60.Tính giá trị lớn nhất của diện tích tam gIác ABC
4.Cho (O) và một đểm A cố định nằm ngoài đường tròn .Xét đường kính BC. Tìm vị trí đường kính BC để AB+AC đạt giá trị nhỏ nhất
Bài2 ,
Ta có\(sin_P^2+cos_P^2=1\)
mà \(2\left(sin_P^2+cos_P^2\right)\ge\left(sin_P+cos_p\right)^2\Rightarrow\left(sin_p+cos_p\right)\le\sqrt{2}\)
^_^