Cho tam giác ABC cân tại A, A B = 10 c m , B C = 16 c m . Độ dài đường trung tuyến AM là:
A. 6cm
B. 156 c m
C. 2cm
D. 4cm
cho tam giác ABC cân tại A , Vẽ BD vuông AC tại D , CE vuông AB tại E .
a, c/m tam giác ABD = tam giác ACE
b, c/m tam giac BDC= tam giác CEB
c, Gọi I là giao điểm của và CE. c/m tam giác cân
d, c/m AI vuôg BC
e, Qua B kẻ đường thăg // vs CE , qua C kẻ đường thẳng // vs BD, 2 đường thẳng này cắt nhau tại H . c/m A,I,H thẳng hàng
Vì tam giác ABC cân tại A(gt)
Suy ra AB= AC tc tâm giác cân
Xét tam giác ABD và tam giác ACE có
góc ADB = góc AEC (=90)
AB = AC cmt
Góc A chung
Suy ra tâm giác ABD = tâm giác ACE ch gn
Xét tam giác BDC và tam giác CEB có
Góc BDC= góc CEB = 90
BC chung
Góc B = góc C tam giác ABC cân tại A
Suy ra tg BDC = tg CEB ch góc nhọn
cho tam giác ABC cân tại B,phân giác góc A cắt BC tại M,phân giác góc C cắt AB tại N
a) chứng minh tam giác ABM~tam giác CBN
b) chứng minh MN//AC
c) cho AB=10:AC=6.Tính độ dài đoạn MN
a)Xét tam giác ABM và tam giác BCN có:
+AB=CB(Theo D/lí tam giác cân)
+Góc B chung
+AM=CN(Vì là hai cạnh tương ứng của hai tam giác bằng nhau)
=> Tam giác ABM=BCN(theo t.hợp C.G.C)\
Vậy tam giác ABM=tam giác BCN
cho tam giác ABC cân tại A có A= 100 độ, M nằm trong tam giác sao cho M B C = 10 độ MCB = 20 độ . tính AMB
Cho tam giác ABC cân tại A
Cho tam giác ABC cân tại A, góc B = 60 độ. Trên tia đối của BC lấy điểm m, trên tia đối của CB lấy điểm N sao cho BM=CN
a)C/m AB=AC
b)C/m tam giác ABM =tam giác ACN
c)C/m tam giác AMN là tam giác cân
a: Ta có: ΔABC cân tại A
nên AB=AC
b: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔABM=ΔACN
c: Ta có: ΔABM=ΔACN
nên AM=AN
hay ΔAMN cân tại A
cho tam giác ABC vuông tại A, có AB=5cm, AC=12cm,đường cao AH(H thuộc BC). Tia phân giác của góc ABC cắt AH tại E và cắt AC tại F.
a) Tính độ dài BC,AF,FC
b)Chứng minh tam giác ABF đồng dạng với tam giác HBE
c) C/m tam giác AEF cân
d) C/m AB.FC=BC.AE
a)Xét △ABC vuông tại A (gt)
=> BC2 = AB2 + AC2 (định lý Pytago)
BC2 = 52 + 122 = 25 + 144 = 169
=> BC = \(\sqrt{169}\) = 13 cm
Xét △ABC có BF là tia phân giác của góc ABC (gt)
=>\(\dfrac{AF}{AB}\) = \(\dfrac{FC}{BC}\) (tính chất đường phân giác)
=>\(\dfrac{AF}{5}\) = \(\dfrac{FC}{13}\) và AF + FC = AC = 12
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\dfrac{AF}{5}\) = \(\dfrac{FC}{13}\) = \(\dfrac{AF+FC}{5+13}\) = \(\dfrac{AC}{18}\) = \(\dfrac{2}{3}\)
=> AF = \(\dfrac{2}{3}\) x 5 = 3,33 cm và FC = \(\dfrac{2}{3}\) x 13 = 8,67 cm
b)Xét △ABF và △HBE có:
góc ABF bằng góc HBE (BF là tia phân giác của góc ABC)
góc BAF bằng góc BHE bằng 90o (tam giác ABC vuông tại A và AH ⊥ BC)
=> △ABF ∼ △HBE (g.g)
c) Vì △ABF ∼ △HBE (câu b)
=> góc BFA bằng góc BEH
mà góc AEF bằng góc BEH (2 góc đối đỉnh)
=> góc BFA bằng góc AEF
=> △AEF cân tại A
d)Xét △ABC và △AHB có:
góc ABC chung
góc BAC bằng góc BHA bằng 90o (tam giác ABC vuông tại A và AH ⊥ BC)
=> △ABC ∼ △HBA (g.g)
=> \(\dfrac{AB}{BC}\) = \(\dfrac{BH}{AB}\) (1)
Xét △ABH có BE là tia phân giác của góc ABC (gt)
=>\(\dfrac{HE}{AE}\) = \(\dfrac{BH}{AB}\) (2) (tính chất đường phân giác)
Từ (1), (2) => \(\dfrac{AB}{BC}\) = \(\dfrac{HE}{AE}\)
=> AB.AE=BC.HE(chắc vậy?)
Giúp giùm câu c,d
Cho tam giác ABC cân tại A. Kẻ am vuông BC tại M.
a) C/m tam giác ABM=ACM và MB=MC
b) Biết AB=20cm: BC=24cm. Tính độ dài đoạn thẳng MB và AM.
c) Kẻ MH vuông AB tại H và MK vuông AC tại K. C/m tam giác AHK cân tại A.
d) tính MH.
a)vì tam giác ABC cân tại A
=>AB=AC và góc ABC=góc ACB
xét tam giác ABM và tam giác ACM có
góc AMB=góc AMC(= 90 độ)
AB=AC
góc ABM=góc ACM
=>tam giác ABM = tam giác ACM (c/h-g/n)
=>MB=MC(2 cạnh tương ứng)
b)ta có BC=24
mà MB=MC
=>M là trung điểm của BC
=>BM=MC=24/2=12 cm
xét tam giác ABM vuông tại M,áp dụng định lý PY-ta go ta có:
\(AB^2=AM^2+BM^2\)
\(AM^2=AB^2-BM^2\)
\(AM^2=20^2-12^2\)
\(AM^2=400-144\)
AM^2=256
=>AM=16 cm
c)vì tam giác ABM = tam giác ACM(cmt)
=>góc BAM=góc CAM(2 góc tương ứng)
xét tam giác HAM và tam giác KAM có
góc AHM = góc AKM(= 90 độ)
cạnh AM chung
góc BAM=góc CAM
=>tam giác HAM = tam giác KAM(c/h-g/n)
=>AH=AK(2 cạnh tương ứng)
=>tam giác AHK cân tại A
d)mình không biết làm phàn này nha
Cho tam giác ABC cân tại A ( A<90 độ) Ba đường cao AH;BD;CE
a) C/M tam giác ABC=ACE
b) C/M tam giác ABC cân tại H
c) Kẻ HM vuông góc AC( M thuộc AC) C/M DM=MC
d) Gọi I là trung điểm của HD. C/M AH vuông góc với MI
Cho tam giác ABC cân tại A có AB = AC = 5cm, BC = 6cm. Phân giác góc B cắt AC tại M, phân giác góc C cắt AB tại N : a) Chứng minh MN // BC b) Tính độ dài AM ? MC ? MN ? c) Tính SAMN ?
cho tam giác ABC cân tại B, phân giác góc A cắt BC tại M, phân giác của góc C cắt BA tại N
a) CM: tam giác ABM đồng dạng với tam giác CBN
b) CM: MN // AC
c) Cho AB=10cm, AC=6cm. tính độ dài MN
Giúp mình làm câu c nhé !
a, Vì tam giác ABC là tam giác cân nên góc BAC=góc BCA (1)
Mà AM là tia phân giác của góc BAC=> góc BAM=Góc MAC (2)
CN là tia phân giác của góc BCA nên góc BCN= góc NCA (3)
Từ (1) (2)(3) suy ra góc BAM=góc BNC
Xét 2 tam giác ABM và tam giác CBN, ta có:
Góc B chung
BAM=BCN (cmt)
=>tam giác ABM đồng dạng với tam giác CBN(g.g)
b, Vì tam giác ABM đồng dạng với tam giác CBN (theo câu a) nên ta có tỉ lệ sau:
BM/BN=BC/BA=>NM//AC( định lý Ta-lét) (đcpcm)
Câu 2 a. Cho tam giác ABC cân tại A có AB = 3cm. Tính độ dài cạnh AC ?
b) Cho tam giác ABC cân tại A có . Tính số đo góc C ?