Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Văn Dũng
Xem chi tiết
Trần Nghiên Hy
Xem chi tiết
Kim Yen Pham
9 tháng 6 2018 lúc 8:44

ta có\(\sqrt{625}\)=25

\(\sqrt{576}\)=24

\(\Rightarrow\)24-1/\(\sqrt{6}\)+1

\(\Rightarrow\)24+-1/\(\sqrt{6}\)

\(\Rightarrow\)25-1/\(\sqrt{6}\)

\(\Rightarrow\)A<B

Hương Lương
Xem chi tiết
Pham Van Hung
29 tháng 10 2018 lúc 21:32

\(A=\sqrt{625}-\frac{1}{\sqrt{5}}=25-\frac{1}{\sqrt{5}}\)

\(B=\sqrt{576}-\frac{1}{\sqrt{6}}+1=24-\frac{1}{\sqrt{6}}+1=25-\frac{1}{\sqrt{6}}\)

\(A< B\)

Sách Giáo Khoa
Xem chi tiết
Trịnh Ánh Ngọc
10 tháng 6 2017 lúc 11:10

\(A=\sqrt{625}-\dfrac{1}{\sqrt{5}}=25-\dfrac{1}{\sqrt{5}}\)

\(B=\sqrt{576}-\dfrac{1}{\sqrt{6}}+1=24-\dfrac{1}{\sqrt{6}}+1=25-\dfrac{1}{\sqrt{6}}.\)

\(\sqrt{5}< \sqrt{6}\) nên \(\dfrac{1}{\sqrt{5}}>\dfrac{1}{\sqrt{6}}.\)

Từ (1), (2) và (3) suy ra \(A< B.\)

pham minh giàu
7 tháng 9 2017 lúc 16:32

B<A

Lý Tùng Lâm
31 tháng 10 2018 lúc 21:32

A=\(\sqrt{625}\)\(\dfrac{1}{\sqrt{5}}\)

⇒A= 25-\(\dfrac{1}{\sqrt{5}}\)

B =\(\sqrt{576}\) - \(\dfrac{1}{\sqrt{6}}+1\)

⇒B = 24-\(\dfrac{1}{\sqrt{6}}+1\)

Hay: B = (24+1)-\(\dfrac{1}{\sqrt{6}}\)

⇒ B=25-\(\dfrac{1}{\sqrt{6}}\)

Vì: 25-\(\dfrac{1}{\sqrt{5}}\) > 25-\(\dfrac{1}{\sqrt{6}}\)

Vậy: A > B

Hoàng Văn Dũng
Xem chi tiết
dang van truong
Xem chi tiết
Xyz OLM
15 tháng 3 2020 lúc 23:31

a)Ta có : \(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}\)

\(\Rightarrow\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)(đpcm)

b) Ta có : \(\sqrt{625}-\frac{1}{\sqrt{5}}=25-\frac{1}{\sqrt{5}}>25-\frac{1}{\sqrt{6}}=24-\frac{1}{\sqrt{6}}+1=\sqrt{576}-\frac{1}{\sqrt{6}}+1\)

\(\Rightarrow\sqrt{625}-\frac{1}{\sqrt{5}}>\sqrt{576}-\frac{1}{\sqrt{6}}+1\)(đpcm)

Khách vãng lai đã xóa
Long quyền tiểu tử
Xem chi tiết
Rùa Con Chậm Chạp
Xem chi tiết
Trần Thanh Phương
4 tháng 11 2018 lúc 16:02

Bài 2 :

Giả sử \(a=\sqrt{3}\)là số hữu tỉ

Khi đó ta có \(a=\sqrt{3}=\frac{m}{n}\)với m, n tối giản ( n khác 0 )

Từ \(\sqrt{3}=\frac{m}{n}\Rightarrow m=\sqrt{3}n\)

Bình phương 2 vế ta được đẳng thức: \(m^2=3n^2\)(*)

\(\Rightarrow m^2⋮3\)mà m tối giản \(\Rightarrow m⋮3\)

=> m có dạng \(3k\)

Thay m vào (*) ta có : \(9k^2=3n^2\)

\(\Leftrightarrow3k^2=n^2\)

\(\Leftrightarrow n=\sqrt{3}k\)

Vì k là số nguyên => n không là số nguyên

=> điều giả sử là sai

=> \(\sqrt{3}\)là số vô tỉ

Kim Khánh Linh
Xem chi tiết
Ngọc Mai_NBK
23 tháng 4 2021 lúc 14:42

a) 3\(\sqrt{3}\)=\(\sqrt{27}\)>\(\sqrt{12}\)

c) \(\frac{1}{3}\)\(\sqrt{51}\)=\(\sqrt{\frac{51}{9}}\)<\(\frac{1}{5}\)\(\sqrt{150}\)=\(\sqrt{\frac{150}{25}}\)=\(\sqrt{6}\)

b) 3\(\sqrt{5}\)=\(\sqrt{45}\)< 7=\(\sqrt{49}\)

d) \(\frac{1}{2}\sqrt{6}\)=\(\sqrt{\frac{6}{4}}\)=\(\sqrt{\frac{3}{2}}\)< 6\(\sqrt{\frac{1}{2}}\)=\(\sqrt{\frac{36}{2}}\)=\(\sqrt{18}\)

Khách vãng lai đã xóa
Phạm Bá Huy
28 tháng 5 2021 lúc 15:47

a) Ta có: 33=32.3=9.3=27

Vì 27>12 nên 33>12

Vậy 33>12.
b) Ta có: 35=32.5=45

7=72=49

Vì 49>45 nên 7>35

Vậy 7>35.

 nên 

.

Khách vãng lai đã xóa
Đỗ Văn Công
11 tháng 6 2021 lúc 21:07

a) \(3\sqrt{3}=\sqrt{9}.\sqrt{3}=\sqrt{27}>\sqrt{12}\)

b) \(3\sqrt{5}=\sqrt{9}.\sqrt{5}=\sqrt{45}< \sqrt{49}=7\)

c) \(\dfrac{1}{3}\sqrt{51}=\sqrt{\dfrac{1}{9}}.\sqrt{51}=\sqrt{\dfrac{51}{9}}=\sqrt{\dfrac{17}{3}}< \sqrt{6}=\dfrac{1}{5}\sqrt{150}\)

d) \(\dfrac{1}{2}\sqrt{6}=\sqrt{\dfrac{3}{2}}< \sqrt{18}=6\sqrt{\dfrac{1}{2}}\)

Khách vãng lai đã xóa