CHo a+b+c=\(a^2+b^2+c^2=1\) và x:y:z=a:b:c
CMR: \(\left(x+y+z\right)^2=x^2+y^2+z^2\)
cho\(a+b+c=a^2+b^2+c^2=1\) và \(x:y:z=a:b:c\)
CMR \(\left(x+y+z\right)^2=x^2+y^2+z^2\)
Cho \(a+b+c=a^2+b^2+c^2=1\) và \(x:y:z=a:b:c\)
Chứng minh \(\left(x+y+z\right)^2=x^2+y^2+z^2\)
Giải:
Ta có: \(x:y:z=a:b:c\Rightarrow\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}.\)
Áp dụng tính chất dãy tỉ số bằng nhau có:
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=\dfrac{x+y+z}{1}=x+y+z.\)
\(\Rightarrow\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\Rightarrow\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\left(x+y+z\right)^2_{\left(1\right)}.\)
Áp dụng tính chất dãy tỉ số bằng nhau có:
\(\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2+y^2+z^2}{1}=x^2+y^2+z^2_{\left(2\right)}.\)
Từ \(_{\left(1\right)}\) và \(_{\left(2\right)}\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\left(đpcm\right).\)
\(Cho\) \(a+b+c=a^2+b^2+c^2=1\)\(và\)\(x:y:z=a:b:c\)
\(CMR:\left(x+y+z\right)^2=x^2+y^2+z^2\)
x:y:z = a:b:c
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
\(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}\)
\(\Rightarrow\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{\left(x+y+z\right)^2}{\left(a+b+c\right)^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
\(\Rightarrow\frac{\left(x+y+z\right)^2}{1}=\frac{x^2+y^2+z^2}{1}\)
\(\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\)
Cho \(a+b+c=a^2+b^2+c^2=1;x:y:z=a:b:c\)
CMR : \(\left(x+y+z\right)^2=x^2+y^2+z^2\)
cho a+b+c = a^2 +b^2+c^2 =1 và x:y:z =a:b:c
CMR : (x+y+z) ^2=x^2 +y^2+z^2
Kb: Có lẽ tôi viết đến đây cũng đã nói hết cảm xúc trong lòng mình. Mọi chuyện rồi cũng sẽ ổn thôi. Đối với đây là 1 cuộc chia tay vô cùng ý nghĩa-Cuộc chia tay của những con búp bê
Ta có BĐT Bu-nhi-a-cốp-xki sau đây :
(a^2 + b^2 + c^2)(x^2 + y^2 + z^2) >= (ax + by + cz)^2
(Bạn tự cm BĐT này)
Từ đó suy ra : (a + b + c)^2 = (a.căn x / căn x + b.căn y/ căn y + c.căn z/căn z)^2
<= [(a/căn x)^2 + (b/căn y)^2 + (c/căn z)^2][(căn x)^2 + (căn y)^2 + (căn z)^2] = (a^2/x + b^2/y + c^2/z)(x+y+z)
=> a^2/x + b^2/y + c^2/z >= (a+b+c)^2/(x+y+z)
Cho a+b+c = a^2 + b^2 + c^2 =1 và x:y:z = a:b:c
CMR: (x+y+z)^2 = x^2 + y^2 + z^2
Cho \(a+b+c=a^2+b^2+c^2=1\) và \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) \(\left(a\ne0,b\ne0,c\ne0\right)\)
Chứng minh rằng: \(\left(x+y+z\right)^2=x^2+y^2+z^2\)
Lời giải:
Đặt $\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=t$
$\Rightarrow x=at; y=bt; z=ct$. Ta có:
$(x+y+z)^2=(at+bt+ct)^2=t^2(a+b+c)^2=t^2(*)$
Mặt khác:
$x^2+y^2+z^2=(at)^2+(bt)^2+(ct)^2=t^2(a^2+b^2+c^2)=t^2(**)$
Từ $(*); (**)\Rightarrow (x+y+z)^2=x^2+y^2+z^2$ (đpcm)
Cho \(a+b+c=a^2+b^2+c^2=1\)và \(x:y:z=a:b:c\)
CHứng minh rằng:
\(\left(x+y+z\right)^2=x^2+y^2+z^2\)
minh mới giải được phần đầu thui nhe!!!!!!!
Ta có: a+b+c=a^2+b^2+c^2=1
Vì x:y:z=a:b:c nên ta có:
x/a=y/b=z/c
Áp dcụng công thức của dãy tỉ số bằng nhau ta có:
x/a=y/b=z/c=(x+y+z)/(a+b+c)=(x+y+z)/1=x+y+z
\(Cho:\) \(a+b+c=a^2+b^2+c^2=1\) và \(x:y:z=a:b:c\)
\(CMR:\) \(\left(x+y+z\right)^2=x^2+y^2+z^2\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\left(1\right)\)
\(\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\left(2\right)\)
Mặc khác , từ 1 , ta lại có :
\(\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\left(x+y+z\right)^2\left(3\right)\)
Từ (2) và (3) ta có điều cần chứng minh