Điều kiện xác định của hàm số y = log 2 2 x + 1 là
A. x > − 1 2 .
B. x ≥ 0 .
C. x > 0 .
D. x ≥ − 1 2 .
Tìm tập xác định của hàm số y = log x 2 - x - 2
A. - ∞ ; 2
B. 1 ; + ∞
C. - ∞ ; - 1 ∪ 2 ; + ∞
D. - 1 ; 1
Tìm tập xác định của hàm số y = log ( x 2 - x - 2 )
A. ( - ∞ ; - 1 ) ∪ ( 2 ; + ∞ )
B. ( - ∞ ; 2 )
C. ( 1 ; + ∞ )
D. (-1; 1)
Tìm tập xác định của hàm số y=log ( x2-x-2)
Tìm tập xác định của hàm số y = log ( x 2 - x - 2 ) ( 1 )
A . ( - ∞ ; 1 ) ∪ ( 2 ; + ∞ )
B . ( - ∞ ; 2 )
C . ( 1 ; + ∞ )
D . ( - 1 ; 1 )
Chọn A
Điều kiện xác định:
Vậy tập xác định của hàm số (1) là
Tìm điều kiện xác định của hàm số y = x + 2 - 2 3
A. x ∈ - 2 ; + ∞
B. x ≠ - 2
C. Với mọi x ∈ ℝ
D. x ∈ [ 2 ; + ∞ )
Đáp án A
Hàm số y = x α , với không nguyên, có tập xác định là tập các số thực dương.
Do đó hàm số đã cho có tập xác định là
Tìm điều kiện xác định của hàm số y = x + 2 − 2 3 .
A. x ∈ − 2 ; + ∞
B. x ∈ ℝ
C. x ≠ − 2
D. x ∈ − 2 ; + ∞
cho hàm số y=f(x)=1/2x-2 tìm điều kiện của x để hàm số y =f(x) xác định
Tìm tập xác định D của hàm số y = l o g ( x 2 - x - 2 ) (1)
Tìm điều kiện xác định của biểu thức A = 2 x - 1 - log ( x - 2 ) 2
A.
B.
C.
D.
Tìm tập xác định của các hàm số sau:
a) \(y = \log \left| {x + 3} \right|;\)
b) \(y = \ln \left( {4 - {x^2}} \right).\)
a, \(y=log\left|x+3\right|\) có nghĩa khi \(\left|x+3\right|>0\)
Mà \(\left|x+3\right|\ge0\forall x\in R\)
\(\Rightarrow\) \(\left|x+3\right|>0\) khi \(x\ne-3\)
Vậy tập xác định của hàm số là D = R \ {-3}.
b, \(y=ln\left(4-x^2\right)\) có nghĩa khi \(4-x^2>0\)
\(\Rightarrow x^2< 4\\ \Leftrightarrow-2< x< 2\)
Vậy tập xác định của hàm số là D = (-2;2).