Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đăng Hùng Ngô
Xem chi tiết
Lê Minh Đức
13 tháng 3 2016 lúc 16:25

BC và AK cắt BC tại H.Ta có HB=HC (AK là trung trực của BC) 
=>HC=BC/2. 
AH=√(AC²-CH²); 
∆ACH~∆COH (tam giác vuông chung góc nhọn tại O) 
=>AH/AC=HC/CO=>CO=AC.HC/AH. 
=20.12/√(20²-12²)=20.12/16=15.

Lê Minh Đức
13 tháng 3 2016 lúc 16:27

 Gọi AH, BK là hai đường cao, có AH = 10; BK = 12 
thấy hai tgiác CAH và CBK đồng dạng => CA/AH = CB/BK 
=> CA/10= 2CH/12 => CA = 2,6.CH (1) 
mặt khác áp dụng pitago cho tgiac vuông HAC: 
CA² = CH² + AH² (2) 

thay (1) vào (2): 2,6².CH² = CH² + 102 
=> (2,6² - 1)CH² = 102=> CH = 10 /2,4 = 6,5 
=> BC = 2CH = 13 cm 

Vy Chu Khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 11 2023 lúc 10:56

loading...  loading...  

Nguyễn Mạnh Khôi
Xem chi tiết
Minh Lê Thái Bình
12 tháng 3 2016 lúc 20:06

ta có: 
AH.BC = BK.AC 
10.BC = 12.AC 
=>BC= 6.AC/5 => BC^2=36.AC^2/25 
mặt khác: 
AC^2 = AH^2 + BC^2/4 = AH^2 + 36.AC^2/100 
=>(1-36/100). AC^2= AH^2 = 100 
=> AC^2 = 100^2/8^2 
=> AC = 100/8 = 25/2 
=> BC = 6.25/2.5=15

Nguyễn Văn Tiến
11 tháng 3 2016 lúc 21:49

tam giac ACH đồng dạng tam giác BKC nên CA/AH = CB/BK 

Ai có thể giúp mình với!!!!!!!!!!!!!!!? | Yahoo Hỏi & Đáp

tự thế số vô

Nguyễn Văn Tiến
11 tháng 3 2016 lúc 21:49

mình thi rùi có 290 ak 

huhu

Lương Thanh Thảo
Xem chi tiết
Nguyễn Xuân Trường Kiên
5 tháng 6 2017 lúc 7:44

Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC

 => AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.

Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago)   mà BN=9cm (gt)

=>AN2+AB2=81        Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81     (1)

Tam giác ABC vuông tại A có: AC2+AB2=BC=> BC2 - AB= AC2   (2)

Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC- AB2)+AB2=81       mà BC=12(cmt)

=> 36 - \(\frac{1}{4}\)AB2+AB2=81

=> 36+\(\frac{3}{4}\)AB2=81

=> AB2=60=>AB=\(\sqrt{60}\)

Nguyễn Thị Bích Ngọc
9 tháng 7 2019 lúc 18:35

C2

Cho hình thang cân ABCD có đáy lớn CD = 1

C4

Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath

Phạm Trang
Xem chi tiết
Kim Thành Đạt
Xem chi tiết
Yaden Yuki
Xem chi tiết
Hoàng Phúc
12 tháng 2 2016 lúc 20:30

BC=41,6(cm)

cần cách làm ko?

Đợi anh khô nước mắt
12 tháng 2 2016 lúc 20:28

41.6 nha bn cá lak trong violympic hjhj

Hoàng Phúc
12 tháng 2 2016 lúc 20:32

tg ABC cân tai A<=>AB=AC

c/m tg vuông AHB=tg vuông AHC (cạnh huyền-cạnh góc vuông)

=>BH=CH

tính BH=\(\sqrt{432,64}=20,8\)

=>BC=20,8.2=41,6(cm)

Phạm Thùy Dung
Xem chi tiết
Phạm Thùy Dung
Xem chi tiết
Nguyễn Linh Chi
22 tháng 6 2020 lúc 15:07

1) d) Ta có: \(\Delta\)KHC cân tại H 

=> HK = CK 

=> AB = AC = 2Ck = 2HK 

=> AB = 2 HK 

Ta có: 

Qua H kẻ đường thẳng // với HA cắt AB tại T 

Xét \(\Delta\)KHA và \(\Delta\)ATK có: 

AK chung 

^HKA = ^TAK ( so le trong ) 

^HAK = ^TKA ( so le trong ) 

=> \(\Delta\)KHA = \(\Delta\)ATK 

=> AT = HK và KT = HA 

=> AB = 2HK = 2AT

Khi đó: AH + BK = KT + BK > BT = AB + AT 

=> 2 ( AH + BK ) > 2 AB + 2AT = 2AB + AB = 3AB 

Vậy 2 ( AH + BK) > 3AB

Khách vãng lai đã xóa
Nguyễn Linh Chi
23 tháng 6 2020 lúc 0:02

2)  M I D E A P Q B C H

a)

Xét \(\Delta\)ADC và \(\Delta\)ABE có: 

AD = AB ( \(\Delta\)ADB cân tại A ) 

AC = AE ( \(\Delta\)ACE cân tại E) 

^DAC = ^BAE ( vì ^DAC = ^DAB + ^BAC = 90o + ^BAC  ; ^BAE = ^BAC + ^CAE = ^BAC + 90o ) 

=> \(\Delta\)ADC = \(\Delta\)ABE (1)

=> CD = EB 

 Gọi P; Q lần lượt là giao điểm của DC và BA và BE

(1) => ^ADC = ^ABE => ^ADP = ^PBQ (2)

Xét \(\Delta\)APD và \(\Delta\)PQB 

có: ^APD + ^ADP + ^PAD = ^PQB + ^PBQ + ^QPB  = 180 độ ( tổng 3 góc  trong 1 tam giác ) 

mà ^ADP = ^PBQ (theo (2)) ; ^APD = ^QPB ( đối đỉnh) 

=> ^PQB = ^PAD = ^BAD = 90 độ  ( \(\Delta\)ABD vuông ) 

=> DC vuông BE 

b) Trên mặt phẳng bờ DE không chứa A, qua D kẻ tia Dx // AE. Trên Dx lấy điểm M sao cho DM = AE 

Gọi giao điểm của DE và MA là I

Dễ dàng chứng minh được: \(\Delta\)DIM = \(\Delta\)EIA  (3) 

=> DM = AE = AC 

Lại có: ^MDA + ^DAE = ^MDE + ^EDA + ^DAE = ^DEA + ^EDA + ^DAE = 180 độ 

mà ^DAE + ^BAC = 180 độ 

=> ^MDA = ^BAC 

Xét \(\Delta\)ABC và \(\Delta\)DAM có: AB = DA ; AC = DM ; ^BAC = ^ADM 

=> \(\Delta\)ABC = \(\Delta\)DAM 

=> ^DAM = ^ABC 

=> ^DAM + ^DAB + ^BAH = ^ABC + 90o + ^BAH = 180 độ 

=> M; I; A; H thẳng hàng 

=> AH cắt DE tại I 

(3) => ID = IE => I là trung điểm của DE 

Do vậy AH đi qua trung điểm của DE 

Khách vãng lai đã xóa
Nguyễn Linh Chi
23 tháng 6 2020 lúc 0:16

2, c) 

A B D K N

Trên mặt phẳng bờ AB  chứa D lấy điểm N sao cho \(\Delta\)ANB đều 

=> BK = AB = BN 

và ^DBN = ^ABN - ^ABD = 60o - 45o = 15 ( vì \(\Delta\)ABD vuông cân => ^ABD = 45 độ ) 

Ta có: ^ABD = 45o mà ^ABK = 30o 

=> ^DBK = ^ABD - ^ABK = 15o 

Xét \(\Delta\)KBD và \(\Delta\)NBD 

có: BN = BK ( chứng minh trên ) 

^DBK = ^DBN ( = 15 độ ) 

BD chung 

=> \(\Delta\)KBD = \(\Delta\)NBD 

=> ND = KD ( 4) 

Xét \(\Delta\)BAK và \(\Delta\)DAN có: 

BA = BK = AN = AD 

^ABK = ^DAN = 30 độ ( vì ^DAN = ^DAB - ^NAB = 90 độ - 60 độ = 30 độ ) 

=> \(\Delta\)BAK = \(\Delta\)DAN 

=> AK = DN ( 5) 

Từ (4) ; (5) => AK = KD

Khách vãng lai đã xóa