Cho hai số phức z 1 = 1 + 2 i và z 2 = 2 - 3 i . Tính z 1 . z 2 ?
A. 1 + 3i
B. -4 + i
C. 8 + i
D. 8 + 7i
Cho hai số phức z1=1+i , z2=3-7i. Tình modun của số phức z1-z2
\(z_1-z_2=1+i-\left(3-7i\right)=1+i-3+7i=-2+8i\)
\(\Rightarrow\left|z_1+z_2\right|=\sqrt{\left(-2\right)^2+8^2}=2\sqrt{17}\)
Cho hai số phức z = 5 + 2 i v à z ' = 1 - i . Tính mô-đun của số phức w = z - z '
A. 5.
B. 3 5
C. 17
D. 37
Chọn đáp án A
Ta có w = z - z ' = 4 + 3 i
⇒ w = 4 2 + 3 2 = 5
Cho hai số phức z = 5 + 2 i và z ' = 1 - i . Tính mô-đun của số phức w = z - z '
A. 7(cm)
B. 3(cm)
C. 6(cm)
D. 2(cm)
Chọn đáp án B
Gọi các kích thước của khối hộp là a (cm), b(cm), c (cm) với a, b, c là các số nguyên dương.
Từ giả thiết ta có
Lại có 9 = b + c ≥ 2 b c ⇒ b c ≤ 81 4
Mà b, c là các số nguyên dương nên b c ≤ 20
Từ b +c =9
⇒ trong hai số b, c có 1 số lẻ và 1 số chẵn ⇒ bc chẵn.
Từ a = 42 b c và a nguyên dương nên bc là ước nguyên dương của 42.
Nếu bc =6 thì b, c là nghiệm của phương trình X 2 - 9 X + 6 = 0 (loại vì nghiệm của phương trình này không là số nguyên).
Nếu bc =14 thì b, c là nghiệm của phương trình
⇒ b c = 14 thỏa mãn. Vậy chiều cao của khối hộp là a = 42 b c = 3 c m
Cho hai số phức z 1 = 1 + i và z 2 = 2 - 3 i . Môđun của số phức z = z 1 - z 2 bằng
A. 17
B. 15
C. 2 + 13
D. 13 - 2
Cho số phức z thỏa mãn z ¯ = ( 2 + i ) 2 ( 1 - 2 i ) . Khi đó tổng bình phương phần thực và phần ảo của số phức z là
A. 18
B. 27
C. 61
D. 72
Cho số phức z = ( 2 + i ) 2 . ( 1 - 2 i ) . Tìm phần thực và ảo của số phức z ¯ .
A. Phần thực bằng 5 và Phần ảo bằng 2 .
B. Phần thực bằng 5 và Phần ảo bằng - 2 .
C. Phần thực bằng –5 và Phần ảo bằng 2 .
D. Phần thực bằng –5 và Phần ảo bằng - 2 .
Đáp án B
Vậy phẩn thực và phần ảo của z ¯ là 5 và 2
Cho hai số phức z và w biết chúng thỏa mãn hai điều kiện ( 1 + i ) z 1 - i + 2 = 2 ,w = iz Giá trị lớn nhất của M = |w - z| bằng
A. 4
B. 2 2
C. 4 2
D. 2
Cho số phức thỏa mãn ( 1 + i ) z + 2 + ( 1 + i ) z - 2 = 4 2 .
Gọi m = m a x z ; n = m i n z và số phức w=m+ni. Tính w 2018 .
A. 4 1009
B. 5 1009
C. 6 1009
D. 2 1009
Đáp án C
Phương pháp
Chia cả 2 vế cho 1 + i và suy ra đường biểu diễn của số phức z
Cách giải
Tập hợp các điểm z là elip có độ dài trục lớn là 2a=4 a=2
và hai tiêu điểm
Cho hai số phức z = (2x+3) + (3y-1)i và z' = (y-1)i. Ta có z = z' khi:
A . x = 3 2 ; y = 0
B . x = - 3 2 ; y = 0
C . x = 3 ; y = 1 3
D . x = 0 ; y = - 3 2
Cho số phức z=-1-2 6 i Tìm phần thực và phần ảo của số phức z ¯
A.Phần thực bằng và phần ảo bằng .
B. Phần thực bằng và phần ảo bằng .
C.Phần thực bằng và phần ảo bằng .
D. Phần thực bằng và phần ảo bằng .