Cho tam giác ABC vuông ở A có A B = 10 c m , A C = 24 c m . So sánh các góc của tam giác ABC
A. A < B < C
B. A > B > C
C. B < A < C
D. C < A < B
cho tam giác ABC vuông tại A tia pg BD ,góc B trên BC lấy E sao cho BA=BE
a) c/m tam giác BAD = tam giác BED
b)c/m AE vuông BD
c) kẻ AH vuông BC . c/m BD là đường trung trực AE và so sánh AE và so sánh EH
b) c/m BD vuông góc AE tại trung điểm I của AE
c) kẻ AH vuông góc BC ( H thuộc BC ) . C/m AH // DE
d) so sánh góc ABC và góc EDC
e) gọi K là giao điểm ED và BA , M là trung điểm của KC . C/m B,D,M thẳng hàng
Đề khó quá nên nhờ mọi người nha
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: Ta có: ΔABD=ΔEBD
=>DA=DE
=>D nằm trên đường trung trực của AE(1)
ta có: BA=BE
=>B nằm trên trung trực của AE(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
=>BD\(\perp\)AE tại trung điểm của AE
c: Ta có: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BED}=90^0\)
=>DE\(\perp\)BC
Ta có: AH\(\perp\)BC
DE\(\perp\)BC
Do đó: AH//DE
d: Ta có: \(\widehat{EDC}+\widehat{ACB}=90^0\)(ΔEDC vuông tại E)
\(\widehat{ABC}+\widehat{ACB}=90^0\)(ΔABC vuông tại A)
Do đó: \(\widehat{EDC}=\widehat{ABC}\)
e: Xét ΔDAK vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADK}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDAK=ΔDEC
=>AK=EC và DK=DC
Ta có: BA+AK=BK
BE+EC=BC
mà BA=BE và AK=EC
nên BK=BC
=>B nằm trên đường trung trực của KC(3)
Ta có: DK=DC
=>D nằm trên đường trung trực của KC(4)
Ta có: MK=MC
=>M nằm trên đường trung trực của KC(5)
Từ (3),(4),(5) suy ra B,D,M thẳng hàng
BÀI TẬP
Bài 1. Cho tam giác ABC có AB=5cm; AC=7cm. So sánh <B và <C
Bài 2. Cho tam giác ABC có AB=3cm; AC= 4cm;BC = 5cm. So sánh các góc của
tam giác
Bài 3.Cho tam giác có <B=60 0 ; <C =40 0 . So sánh các cạnh của tam giác ABC
Bài 4. Cho tam giác ABC vuông ở A có AB= 6cm; BC = 10 cm
1/ Tính AC
2/ So sánh các góc của tam giác ABC
Câu 4: (4,5 điểm) Cho ABC có AB = 6cm, AC = 8cm, BC = 10.
a) Chứng minh ABC là tam giác vuông.
b) So sánh các góc của ABC.
c) Kẻ AH vuông góc với BC (H thuộc BC). So sánh AH, BH, CH.
d) Lấy điểm M trên cạnh BC sao cho H là trung điểm của BC. Chứng minh ABM là tam giác cân.
e) Gọi N là trung điểm của AM (N thuộc AM), gọi G là điểm thuộc đoạn AH sao cho ag=2gh. chứng minh 3 điểm b ; g ; n thẳng hàng
Cho tam giác ABC vuông tại C có góc B= 40* và phân giác AD. Lấy E thuộc AB sao cho AE=AC
a) So sánh các cạnh của tam giác ABC
b)C/m tam giác ADE vuông
c) Đường vuông góc vs AC tại A cắt đường thẳng DE tại H. C/m tam giác ADH cân
Cho tam giác ABC vuông tại A (AB<AC) có AH là đường cao. Lấy điểm D đối xứng với B qua đt AH. Kẻ DE vuông AC ở E, HK vuông AC ở K
a) Tứ giác DEAB là hình gì
b) So sánh KA và KE
c) C/m tam giác AHE cân
d) Gọi M là trung điểm của DC. C/m góc HEM = 90 độ
cho tam giác ABC có góc A=60độ, AB<AC, đường cao BH.
a) So sánh góc ABC và góc ACB
b) Vẽ AD là phân giác của góc A, vẽ BI vuông góc với AD tại I. Chứng minh tam giác AIB=tam giác BHA
c) Tia BI cắt AC ở E. C/m: tam giác ABE đều
d) C/m DC>DB
Cho tam giác ABC có góc B = góc C . Tia phân giác góc B cắt AC ở M và tia phân giác góc C cắt AB ở N
a)So sánh BM và CN
b) C/m tam giác ABM = tam giác ACN
a)Có: ^B=^C(gt)
Mà BM là tia pg của ^B
CN là tia pg của ^C
=> ^CBM=^BCN=^ABM=^ACN
Xét ΔBNC và ΔCMB có:
^B=^C(gt)
BC: cạnh chung
^BCN=^CBM(cmt)
=>ΔBNC=ΔCMB(g.c.g)
=>NC=BM
b) Vì ^B=^C(gt)
=> ΔABC cân tại A
=>AB=AC
Xét ΔABM và ΔACN có:
^A: góc chung
AB=AC(cmt)
^ABM=^ACN(cmt)
=>ΔABM=ΔACN(g.c.g)
Cho tam giác ABC có B = C, tia phân giác của B cắt AC ở M, tia phân giác của C cắt AB ở N.
a) So sánh BM và CN
b) C/m: tam giác ABM = tsm giác ACN
Cho tam giác ABC vuông tại A có AB=3cm,BC=5cm,AC=4cm.Trên tia đối của tia AB lấy điểm M sao cho AB=AM a,so sánh các góc của tam giác ABC b,Chứng minh tam giác BCM cân c,M là trung điểm của cạnh BC,BN cắt AC ở I,MI cắt BC tại H.Chứng minh M,I,H thẳng hàng d,Chứng minh BN+MH+CA< BM+BC+CM Giúp em vớiii,gấp lắm rồi ạaa😭
a: AB<AC<BC
=>góc C<góc B<góc A
b: Xét ΔCBM có
CA vừa là đường cao, vừa là trung tuyến
=>ΔCBM cân tại C
c: N ở đâu vậy bạn?