Tìm x, y thỏa mãn điều kiện sau: x+y = x:y
tìm x, y sao cho thỏa mản điều kiện x+y=x*y=x:y
Giải
\(xy\) = \(\dfrac{x}{y}\) (đk y ≠ 0)
\(xy^2\) = \(x\)
\(xy^2\) - \(x\) = 0
\(x.\left(y^2-1\right)\) = 0
\(\left[{}\begin{matrix}x=0\\y^2-1=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\y=-1\\y=1\end{matrix}\right.\)
nếu \(x=0\) ⇒ y = 0 x y = 0 (loại) (1)
Nếu y = -1 ta có: \(x-1\) = \(x.\left(-1\right)\) = - \(x\)
\(x\) + \(x\) = 1
2\(x\) = 1
\(x\) = \(\dfrac{1}{2}\) (2)
Nếu y = 1 thì \(x+1\) = \(x.1\) ⇒ 1 = 0 (vô lý) (loại) (3)
Từ (1); (2); (3) kết luận nghiệm của phương trình là:
(\(x;y\)) = (\(\dfrac{1}{2}\); -1)
Câu 1: Tìm các số hữu tỉ x.y thỏa mãn điều kiện:
a) x+ y = x.y = x:y
b) x-y = x.y = x:y
câu 2: CHo x, y, z là các số hữu tỉ khác 0 (CHứng minh)
a)x. (y.z) = x : y : z
b) (x . y) : z + (x : z) . y = x. (y.z)
GIÚP MK VS NHEN MẤY BN!!!
1/ a/ x = 1/2, y = -1
b/ x = -1/2 ; y = 1
tìm x,y thỏa mãn đồng thời hai điều kiện sau:
4x=5y và x mũ 2 - y mũ 2 = 1
\(4x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}\)
Đặt \(\dfrac{x}{5}=\dfrac{y}{4}=k\Rightarrow\left\{{}\begin{matrix}x=5k\\y=4k\\\end{matrix}\right.\)
Thay vào \(x^2-y^2=1\)
\(\Rightarrow\left(5k\right)^2-\left(4k\right)^2=1\)
\(\Leftrightarrow25k^2-16k^2=1\)
\(\Leftrightarrow9k^2=1\)
\(\Leftrightarrow k^2=\dfrac{1}{9}\)
\(\Leftrightarrow k=\pm\dfrac{1}{3}\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=5k=5.\dfrac{1}{3}=\dfrac{5}{3}\\y=4k=4.\dfrac{1}{3}=\dfrac{4}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x=5k=5.\left(-\dfrac{1}{3}\right)=-\dfrac{5}{3}\\y=4k=4.\left(-\dfrac{1}{3}\right)=-\dfrac{4}{3}\end{matrix}\right.\end{matrix}\right.\)
tìm tập hợp A bằng 2 cách thỏa mãn điều kiện sau:(a thuộc z)
a,-5<A<5
b,25-5<A<-25-5
c,xy=A=X:y với x,y thuộc z x=\(\frac{2}{3}\) và y=\(\frac{9}{4}\)
tìm các cặp số nguyên (x;y) thỏa mãn các điều kiện sau
x+y=4
/2x+1/+/y-x/=5
Tìm các số x, y thỏa mãn đồng thời hai điều kiện sau: 4x = 5y và x^2 - y^2 = 1
\(4x=5y\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\left(\frac{x}{5}\right)^2=\left(\frac{y}{4}\right)^2=\frac{x^2}{25}=\frac{y^2}{16}\)
Áp dụng TC DTSBN ta có :
\(\frac{x^2}{25}=\frac{y^2}{16}=\frac{x^2-y^2}{25-16}=\frac{1}{9}\)
\(\Rightarrow\frac{x^2}{25}=\frac{1}{9}\Rightarrow x^2=\frac{25}{9}\Rightarrow x=\frac{-5}{3};\frac{5}{3}\)
\(\Rightarrow\frac{y^2}{16}=\frac{1}{9}\Rightarrow y^2=\frac{16}{9}\Rightarrow y=\frac{-4}{3};\frac{4}{3}\)
Ta có
4x=5y và x2-y2=1
Có \(\frac{x}{5}=\frac{y}{4}\)và x2-y2=1
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{5}=\frac{y}{4}=\frac{x^2-y^2}{5^2-4^2}=\frac{1}{9}\)
Suy ra: \(\frac{x^2}{5^2}=\frac{1}{9}\)=>\(x^2=\frac{1}{9}.25=\frac{25}{9}\)=>\(x=\frac{5}{3}or\frac{-5}{3}\)
Cách tìm y tương tự như vậy
Kq cuối cùng là \(x=\frac{5}{3}or\frac{-5}{3}\)\(y=\frac{4}{3}or\frac{-4}{3}\)
Tìm các số x, y thỏa mãn đồng thời hai điều kiện sau: 4x = 5y và x^2 - y^2 = 1
giúp mình vs
`#3107.101107`
`4x = 5y => x/5 = y/4`
Đặt `x/5 = y/4 = k`
`=> x = 5k; y = 4k`
Ta có: `x^2 - y^2 = 1`
`=> (5k)^2 - (4k)^2 = 1`
`=> 25k^2 - 16k^2 = 1`
`=> 9k^2 = 1`
`=> k^2 = 1 \div 9`
`=> k^2 = 1/9`
`=> k^2 = (+-1/3)^2`
`=> k = +-1/3`
Với `k = 1/3`
`=> x = 1/3*5 = 5/3; y = 1/3*4 = 4/3`
Với `k = -1/3`
`=> x = -1/3*5 = -5/3; y = -1/3*4 = -4/3.`
1) Tìm các số a,b thỏa mãn trong các điều kiện sau:
a + b = | b | - | a |
2) Có bao nhiêu cặp số nguyên (x,y) thỏa mãn một trong các điều kiện sau:
| x | + | y | = 20
| x | + | y | < 20
(Các cặp số (3 ; 4) và (4 ; 3) là hai cặp số khác nhau).
cho x, y, f thỏa mãn 3 điều kiện sau:
x +y = -5 ; y+ f = -16 và f +x= 9
tìm x, y, f