Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ngo thai huy
Xem chi tiết
ngo thai huy
23 tháng 12 2021 lúc 15:42

giúp mình mọi người ơi

gfdzdfa
Xem chi tiết
Thái Thùy Linh
Xem chi tiết
Nguyễn Quang Định
26 tháng 12 2016 lúc 9:47

\(\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}=\frac{x+2}{x+2}+\frac{-5}{x^2+x-6}+\frac{-1}{x-2}\)

=\(\frac{\left(x+2\right)\left(x-2\right)}{x^2+x-6}+\frac{-5}{x^2+x-6}+\frac{-1\left(x+3\right)}{x^2+x-6}=\frac{\left(x+2\right)\left(x-2\right)-5-1\left(x+3\right)}{x^2+x-6}\)

=\(\frac{x^2-4-5-x-3}{x^2+x-6}=\frac{x^2-x-12}{x^2+x+6}\)

\(\frac{x^2-x-12}{x^2+x-6}=\frac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}\)

Để giá trị của PT A được xác định thì \(\left(x-2\right)\ne0\)\(\left(x+3\right)\ne0\)

=> \(x\ne2\)\(x\ne-3\) thì PT được xác định

Nguyễn Quang Định
26 tháng 12 2016 lúc 9:28

@__@ Lag cả cái đề

Nguyễn Quang Định
26 tháng 12 2016 lúc 9:51

b) \(\frac{x^2-x-12}{x^2+x-6}=\frac{x^2+3x-4x-12}{\left(x-2\right)\left(x+3\right)}=\frac{x\left(x+3\right)-4\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}=\frac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}=\frac{x-4}{x-2}\)

Hoa Mặt Trời
Xem chi tiết
❤  Hoa ❤
24 tháng 3 2019 lúc 11:04

a, Để A có nghĩa 

\(\Leftrightarrow x^2-1\ne0\)

\(\Rightarrow\orbr{\begin{cases}x-1\ne0\\x+1\ne0\end{cases}}\Rightarrow\orbr{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)

\(b,A=\frac{\left(x-1\right)\left(x-3\right)}{x^2-1}\)

\(A=\frac{\left(x-1\right)\left(x-3\right)}{\left(x+1\right)\left(x-1\right)}\)

\(A=\frac{\left(x-3\right)}{\left(x+1\right)}\)

Hoa Mặt Trời
24 tháng 3 2019 lúc 11:05

cảm ơn <3

❤  Hoa ❤
24 tháng 3 2019 lúc 11:08

c, Thay x = 5 vaò A 

\(\Rightarrow A=\frac{5-3}{5+1}\)

\(A=\frac{2}{6}=\frac{1}{3}\)

KL : Giá trị của A = 1/3 tại x = 5

Tran Thi Xuan
Xem chi tiết
Quang Tuấn
Xem chi tiết
Phạm Thị Mai Anh
2 tháng 7 2020 lúc 18:40

Bài 17.Cho phân thức: A=2x-1/x^2-x
a. Tìm điều kiện để giá trị của phân thức được xác định.
x^2 - x # 0 
<=> x ( x - 1 ) # 0
<=> x # 0
<=> x -1 # 0 => x # 1
b. Tính giá trị của phân thức khi x = 0 và khi x = 3.
Nếu x = 0 thì phân thức ko xác định
Nếu x = 3 thì
2.3 - 1 / 3^2 - 3
= 5/6

Khách vãng lai đã xóa
Minh
Xem chi tiết
Nguyễn Nhất Linh
Xem chi tiết
ngonhuminh
1 tháng 1 2017 lúc 19:46

Dài quá trôi hết đề khỏi màn hình: nhìn thấy câu nào giải cấu ấy

Bài 4:

\(A=\frac{\left(x-1\right)+\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{2}{\left(x+1\right)\left(x-1\right)}=\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)

a) DK x khác +-1

b) \(dk\left(a\right)\Rightarrow A=\frac{2}{\left(x+1\right)}\)

c) x+1  phải thuộc Ước của 2=> x=(-3,-2,0))

Đỗ Lê Mỹ Hạnh
1 tháng 1 2017 lúc 20:00

1. a) Biểu thức a có nghĩa \(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x^2-4\ne0\end{cases}}\)

                                      \(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x-2\ne0\\x+2\ne0\end{cases}}\)

                                       \(\Leftrightarrow\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)

   Vậy vs \(x\ne2,x\ne-2\) thì bt a có nghĩa

b)  \(A=\frac{x}{x+2}+\frac{4-2x}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{4-2x}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{x^2-2x+4-2x}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{x^2-4x+4}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}\)

 \(=\frac{x-2}{x+2}\)       

c) \(A=0\Leftrightarrow\frac{x-2}{x+2}=0\)             

\(\Leftrightarrow x-2=\left(x+2\right).0\)          

\(\Leftrightarrow x-2=0\)   

\(\Leftrightarrow x=2\)(ko thỏa mãn điều kiện )

=> ko có gía trị nào của x để A=0

Cold Wind
1 tháng 1 2017 lúc 20:06

Bài 1: 

a) \(x+2\ne0\Leftrightarrow x\ne-2\)

\(x^2-4\ne0\Leftrightarrow x\ne+_-2\)

b) \(A=\frac{x}{x+2}+\frac{4-2x}{x^2-4}=\frac{x-2}{x+2}\)

c) \(A=0\Leftrightarrow\frac{x-2}{x+2}=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Mà đk: x khác 2 

Vậy ko tồn tại giá trị nào của x để A=0

Lê Quỳnh Chi Phạm
Xem chi tiết
HT.Phong (9A5)
11 tháng 10 2023 lúc 18:25

1) \(A=3\sqrt{\dfrac{1}{3}}-\dfrac{5}{2}\sqrt{12}-\sqrt{48}\)

\(=3\cdot\dfrac{\sqrt{1}}{\sqrt{3}}-\dfrac{5\sqrt{12}}{2}-\sqrt{4^2\cdot3}\)

\(=\dfrac{3\cdot1}{\sqrt{3}}-\dfrac{5\cdot2\sqrt{3}}{2}-4\sqrt{3}\)

\(=\sqrt{3}-5\sqrt{3}-4\sqrt{3}\)

\(=-8\sqrt{3}\)

2) \(A=\sqrt{12-4x}\) có nghĩa khi:

\(12-4x\ge0\)

\(\Leftrightarrow4x\le12\)

\(\Leftrightarrow x\le\dfrac{12}{4}\)

\(\Leftrightarrow x\le3\)

3) \(\dfrac{2x-2\sqrt{x}}{x-1}\)

\(=\dfrac{2\sqrt{x}\cdot\sqrt{x}-2\sqrt{x}}{\left(\sqrt{x}\right)^2-1^2}\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{2\sqrt{\text{x}}}{\sqrt{x}+1}\)