Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
fidlend
Xem chi tiết

Giải:

a) \(M=21^9+21^8+21^7+...+21+1\) 

Do \(21^n\) luôn có tận cùng là 1

\(\Rightarrow M=21^9+21^8+21^7+...+21+1\) 

Tân cùng của M là:

     \(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0

\(\Rightarrow M⋮10\) 

\(\Leftrightarrow M⋮2;5\) 

b) \(N=6+6^2+6^3+...+6^{2020}\) 

\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\) 

\(N=6.7+6^3.7+...+6^{2019}.7\) 

\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\) 

\(\Rightarrow N⋮7\) 

Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\) 

Mà \(6⋮̸9\) 

\(\Rightarrow N⋮̸9\) 

c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\) 

\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\) 

\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\) 

\(\Rightarrow P⋮20\) 

\(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\) 

\(P=4.21+...+4^{22}.21\) 

\(P=21.\left(4+...+4^{22}\right)⋮21\) 

\(\Rightarrow P⋮21\) 

d) \(Q=6+6^2+6^3+...+6^{99}\) 

\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\) 

\(Q=6.43+...+6^{97}.43\) 

\(Q=43.\left(6+...+6^{97}\right)⋮43\) 

\(\Rightarrow Q⋮43\) 

Chúc bạn học tốt!

Lê Thị Thanh Hà
Xem chi tiết
keditheoanhsang
30 tháng 10 2023 lúc 21:05

Bài 4: Để tìm các chữ số a, b thỏa mãn các điều kiện, ta sẽ kiểm tra từng trường hợp.

a. Để số 4a12b chia hết cho 2, 5 và 9, ta cần xét chữ số cuối cùng b. Vì số chia hết cho 2, nên b phải là số chẵn. Vì số chia hết cho 5, nên b phải là 0 hoặc 5. Vì số chia hết cho 9, nên tổng các chữ số trong số đó phải chia hết cho 9. Ta thử từng trường hợp:

Nếu b = 0, thì tổng các chữ số là 4 + a + 1 + 2 + 0 = 7 + a. Để 7 + a chia hết cho 9, ta có a = 2. Nếu b = 5, thì tổng các chữ số là 4 + a + 1 + 2 + 5 = 12 + a. Để 12 + a chia hết cho 9, ta có a = 6.

Vậy, các giá trị thỏa mãn là a = 2 hoặc a = 6, và b = 0 hoặc b = 5.

b. Để số 5a43b chia hết cho 2, 3 và 5, ta cần xét chữ số cuối cùng b. Vì số chia hết cho 2, nên b phải là số chẵn. Vì số chia hết cho 3, nên tổng các chữ số trong số đó phải chia hết cho 3. Vì số chia hết cho 5, nên b phải là 0 hoặc 5. Ta thử từng trường hợp:

Nếu b = 0, thì tổng các chữ số là 5 + a + 4 + 3 + 0 = 12 + a. Để 12 + a chia hết cho 3, ta có a = 0 hoặc a = 3 hoặc a = 6 hoặc a = 9. Nếu b = 5, thì tổng các chữ số là 5 + a + 4 + 3 + 5 = 17 + a. Để 17 + a chia hết cho 3, ta có a = 1 hoặc a = 4 hoặc a = 7.

Vậy, các giá trị thỏa mãn là a = 0 hoặc a = 3 hoặc a = 6 hoặc a = 9, và b = 0 hoặc b = 5.

c. Để số 735a2b chia hết cho 5 và 9, nhưng không chia hết cho 2, ta cần xét chữ số cuối cùng b. Vì số chia hết cho 5, nên b phải là 0 hoặc 5. Vì số chia hết cho 9, nên tổng các chữ số trong số đó phải chia hết cho 9. Ta thử từng trường hợp:

Nếu b = 0, thì tổng các chữ số là 7 + 3 + 5 + a + 2 + 0 = 17 + a. Để 17 + a chia hết cho 9, ta có a = 7 hoặc a = 8. Nếu b = 5, thì tổng các chữ số là 7 + 3 + 5 + a + 2 + 5 = 22 + a. Để 22 + a chia hết cho 9, ta có a = 2 hoặc a = 5 hoặc a = 8.

Vậy, các giá trị thỏa mãn là a = 2 hoặc a = 5 hoặc a = 7 hoặc a = 8, và b = 0 hoặc b = 5.

Bài 5: Để xác định xem tổng A có chia hết cho 8 hay không, ta cần tính tổng A và kiểm tra xem nó có chia hết cho 8 hay không.

tong khanh trang
Xem chi tiết
nhem
Xem chi tiết
De Thuong
22 tháng 12 2015 lúc 9:24

Minh lam cau A) thoi duoc hong

Yuki_Kali_Ruby
Xem chi tiết
amazing
17 tháng 10 2021 lúc 18:58

Giúp với

Chứng tỏ rằng 3^4+3^5+3^6+3^7+3^8+3^9 chia hết cho 4 không tính nhân ra rồi chia nha


 

Khách vãng lai đã xóa
Duy Khánh Nguyễn
Xem chi tiết
Dưỡng Quốc
21 tháng 12 2015 lúc 17:07

A=4+42+43+44+45+46+47+48+49

A=(4+42+43)+(44+45+46)+(47+48+49)

A=4.(1+4+42)+44.(1+4+42)+47.(1+4+42)(cho viet lien la dau nhan)

A=4.21+44.21+47.21

A=4.3.7+44.3.7+47.3.7

A=(4+44+47).3.7chia het cho ca 3 va 7

vậy A chia hết cho cả 3 và 7

tran thi quynh nhu
Xem chi tiết
tran thi quynh nhu
28 tháng 2 2018 lúc 21:22

giúp tui với 

tui đang cần lắm đó bà con ơi

Cư Dinh
2 tháng 6 2021 lúc 11:20

em mới lớp 5 seo anh gọi em là: BÀ CON

Khách vãng lai đã xóa
HEV_NTP
29 tháng 8 2021 lúc 8:58

Ngáo hết 

 

tran dinh binh
Xem chi tiết
Trương Minh Tiến
16 tháng 11 2017 lúc 19:23

A=1+4+4^2+4^3+4^4+4^5+4^6+4^7+4^8+4^9+4^10+4^11

A=(1+4)+(4^2+4^3)+(4^4+4^5)+(4^6+4^7)+(4^8+4^9)+(4^10+4^11)

A=(1+4)+4^2(1+4)+4^4(1+4)+4^6(1+4)+4^8(1+4)+4^10(1+4)

A=5(1+4^2+4^4+4^6+4^8+4^10) chia hết cho 5

Vậy A chia hết cho 5

tran dinh binh
16 tháng 11 2017 lúc 19:27

ban lam dung roi  mình sẽ k cho bạn

hiep nguyen
Xem chi tiết
hiep nguyen
14 tháng 8 2017 lúc 19:33

Ai giúp mình với

phan đức hiển
16 tháng 1 2018 lúc 20:48

toán lớp mấy đấy