Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn ngọc anh
Xem chi tiết
Lỗ Thị Thanh Lan
Xem chi tiết
Ngô Văn Phương
17 tháng 12 2014 lúc 14:30

a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)

   60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)

b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.

Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.

c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)

   2100 chia hết cho 15 => 2100b chia hết cho 15 (2)

Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)

d,Ta có : n^2+n+1=nx(n+1)+1

nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.

nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.

Nguyễn Minh Trí
10 tháng 6 2015 lúc 11:12

Mình xin trả lời ngắn gọn hơn!                                                                      a)60 chia hết cho 15=> 60n chia hết cho 15                                                   15 chia hết cho 15                                                                                       =>60n+15 chia hết cho 15.                                                                             60 chia hết cho 30=>60n chia hết cho 30                                                      15 không chia hết cho 30                                                                       =>60n+15 không chia hết cho 30                                             b)Gọi số tự nhiên đó là A                                                                           Giả sử A thỏa mãn cả hai điều kiện                                                           => A= 15.x+6 & = 9.y+1                                                                         Nếu A = 15x +6 => A chia hết cho 3                                                          Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=>                                    c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15.             => 1500a+2100b chia hết cho 15.                                                          d) A chia hết cho 2;5 => A chia hết cho 10.                                                 => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.)                    Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ)                           Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ)                                       => A không chia hết cho 2;5

 

 

cc
17 tháng 7 2016 lúc 8:56

 Nguyễn Minh Trí giải kiểu j thế ?

Nhìn cái lồn
Xem chi tiết
Nhìn cái lồn
7 tháng 4 2023 lúc 22:03

     

Carthrine
Xem chi tiết
Feliks Zemdegs
20 tháng 10 2015 lúc 19:38

Ta có: n^2 + n + 2 = n(n+1) + 2. 
n(n+1) là tích của 2 số tự nhiên liên liên tiếp nên có chữ số tận cùng là 0; 2; 6.
=> n(n+1)+2 có chữ số tận cùng là 2; 4; 8. 
Mà 2; 4; 8 không chia hết cho 5. 

=> n(n+1)+2 không chia hết cho 5. 
Vậy: n^2 + n+2 không chia hết cho 15 với mọi n thuộc N.

Ran Mori
Xem chi tiết
Huệ Phạm
22 tháng 9 2018 lúc 13:40

Đặt A = n(n^4-16).
Ta có: n(n^4-16) = n(n^2-4)(n^2+4) = n(n-2)(n+2)(n^2+4)
Để chứng minh A chia hết cho 15, ta sẽ chứng minh A chia hết cho cả 3 và 5.
a. Chứng minh A chia hết cho 3:
- Nếu n = 3k, dĩ nhiên A chia hết cho 3.
- Nếu n = 3k+1, => n+2 = 3k+3 chia hết cho 3 => A chia hết cho 3.
- Nếu n = 3k+2, => n-2 = 3k chia hết cho 3 => A chia hết cho 3.
b. Chứng minh A chia hết cho 5:
- Nếu n=5k dĩ nhiên A chia hết cho 5.
- Nếu n = 5k+1, => n^2+4 = ((5k+1)^2+4) = 25k^2+10k+5 chia hết cho 5 => A chia hết cho 5.
- Nếu n = 5k+2, => n-2 = 5k chia hết cho 5 => A chia hết cho 5.
- Nếu n = 5k+3, => n+2 = 5k+5 chia hết cho 5 => A chia hết cho 5.
- Nếu n = 5k+4, => n^2+4 = ((5k+4)^2+4) = 25k^2+40k+20 chia hết cho 5 => A chia hết cho 5.
Trong mọi trường hợp,A chia hết cho cả 3 và 5, mà 2 số này nguyên tố cùng nhau => A chia hết cho 15

miu cooki
Xem chi tiết
Xyz OLM
10 tháng 2 2020 lúc 8:54

Ta có\(\frac{3}{9.14}+\frac{3}{14.19}+...+\frac{3}{\left(5n-1\right)\left(5n+4\right)}=\frac{3}{5}\left(\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{\left(5n-1\right)\left(5n+4\right)}\right)\)

\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{5n-1}-\frac{1}{5n+4}\right)=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{5n+4}\right)=\frac{1}{15}-\frac{3}{25n+20}\)(1)

kết hợp điều kiện ta có \(\frac{3}{25n+20}\ge\frac{3}{25.2+20}=\frac{3}{70}>0\)

=> \(\frac{3}{9.14}+\frac{3}{14.19}+...+\frac{3}{\left(5n-1\right)\left(5n+4\right)}< \frac{1}{15}\)(đpcm)

Khách vãng lai đã xóa
Trịnh Thị Minh Ánh
Xem chi tiết
Pham Khanh Linh
Xem chi tiết
nguyễn hải bình
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 2 2017 lúc 9:30