chứng tỏ rằng S = \(\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{n^2-1}{n^2}\) không là số tự nhiên với mọi
n\(\in\) N, n>2
Chứng minh rằng với mọi số tự nhiên n lớn hơn hoặc bằng 2 thì tổng:
\(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n^2}\)không thể là một số nguyên
CMR: S= 3/4+ 8/9+15/16+...+n^2-1/n^2 ko phải là một số tự nhiên( n >2, n thuộc N)
CMR: S = \(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n^2}\)
Không là số tự nhiên với mọi n thuộc N n> hoặc = 2
CMR: \(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+....+\frac{n^2-1}{n^2}\) không là số tự nhiên với mọi \(n\in N,n>2\)
Chứng tỏ rang tổng sau :
\(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n^2}\)không phải là sô tự nhiên với n thuộc N* và n > 2
cmr với mọi số tự nhiên n lớn hơn hoặc bằng 2 thì S=3/4+8/9+15/16+...+n2-1/n ko thể là 1 số nguyên
Chứng tỏ rằng F = 3/4 + 8/9 + 15/6 + ...+n^2-1/n^2 ko phải là số tự nhiên vs n thuộc N,n>2
CMR với mọi số tự nhiên n>1 thì S=\(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n}\)