Dựa vào đồ thị của hàm số y = sin x, vẽ đồ thị của hàm số y = |sin x|
Dựa vào đồ thị của hàm số \(y=\sin x\), hãy vẽ đồ thị của hàm số \(y=\left|\sin x\right|\) ?
Bài 3. Ta có
|sinx|={sinx,sinx≥0−sinx,sinx≤0|sinx|={sinx,sinx≥0−sinx,sinx≤0
Mà sinx < 0 ⇔ x ∈ (π + k2π , 2π + k2π), k ∈ Z nên lấy đối xứng qua trục Ox phần đồ thị của hàm số y = sinx trên các khoảng này còn giữ nguyên phần đồ thị hàm số y = sinx trên các đoạn còn lại ta được đồ thị của hàm số y = IsinxI
Quan sát đồ thị hàm số \(y = \sin x\) ở Hình 25.
a) Nêu tập giá trị của hàm số \(y = \sin x\)
b) Gốc tọa độ có là tâm đối xứng của đồ thị hàm số không? Từ đó kết luận tính chẵn, lẻ của hàm số \(y = \sin x\)
c) Bằng cách dịch chuyển đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\) song song với trục hoành sang phải theo đoạn có độ dài \(2\pi \), ta có nhận được đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ {\pi ;3\pi } \right]\) hay không? Hàm số \(y = \sin x\)có tuần hoàn hay không/
d) Tìm khoảng đồng biến, nghịch biến của hàm số \(y = \sin x\)
a) Tập giá trị của hàm số\(y = \sin x\) là \(\left[ { - 1;1} \right]\)
b) Đồ thị hàm số \(y = \sin x\) nhận O là tâm đối xứng.
Như vậy hàm số \(y = \sin x\) là hàm số lẻ.
c) Bằng cách dịch chuyển đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\) song song với trục hoành sang phải theo đoạn có độ dài \(2\pi \), ta nhận được đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ {\pi ;3\pi } \right]\)
Như vậy, hàm số \(y = \sin x\) có tuần hoàn .
d) Hàm số \(y = \sin x\) đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k2\pi ;\frac{\pi }{2} + k2\pi } \right)\), nghịch biến trên mỗi khoảng \(\left( {\frac{\pi }{2} + k2\pi ;\frac{{3\pi }}{2} + k2\pi } \right)\) với \(k \in Z\)
Dựa vào đồ thị hàm số \(y=\sin x\), tìm các khoảng giá trị của x để hàm số đó nhận giá trị dương ?
Nhìn đồ thị y = sinx ta thấy trong đoạn [-π ; π] các điểm nằm phía trên trục hoành của đồ thị y = sinx là các điểm có hoành độ thuộc khoảng (0 ; π). Từ đố, tất cả các khoảng giá trị của x để hàm số đó nhận giá trị dương là (0 + k2π ; π + k2π) hay (k2π ; π + k2π) trong đó k là một số nguyên tùy ý.
Dựa trên đồ thị hàm số y = sin x, tìm các khoảng giá trị của x để hàm số đó nhận giá trị dương.
Dựa trên đồ thị hàm số y = sin x, tìm các khoảng giá trị của x để hàm số đó nhận giá trị dương.
Đồ thị hàm số y = sin x:
Dựa vào đồ thị hàm số y = sin x ta thấy
y = sin x > 0
⇔ x ∈ (-2π; -π) ∪ (0; π) ∪ (2π; 3π) ∪…
hay x ∈ (k2π; π + k2π) với k ∈ Z.
từ đồ thị hàm số y = \(\sin x\) , hãy suy ra đồ thị các hàm số sau và vẽ các đồ thị các hàm số đó : a) y = \(-\sin x\) ; b) y = \(\left|\sin x\right|\) ; c) y = \(\sin\left|x\right|\)
từ đồ thị hàm số y = \(\sin x\) , hãy suy ra đồ thị các hàm số sau và vẽ các đồ thị các hàm số đó : a) y = \(-\sin x\) ; b) y = \(\left|\sin x\right|\) ; c) y = \(\sin\left|x\right|\)
từ đồ thị hàm số y = \(\sin x\) , hãy suy ra đồ thị các hàm số sau và vẽ các đồ thị các hàm số đó : a) y = \(-\sin x\) ; b) y = \(\left|\sin x\right|\) ; c) y = \(\sin\left|x\right|\)
từ đồ thị hàm số y = \(\sin x\) , hãy suy ra đồ thị các hàm số sau và vẽ các đồ thị các hàm số đó : a) y = \(-\sin x\) ; b) y = \(\left|\sin x\right|\) ; c) y = \(\sin\left|x\right|\)