Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Khánh Linh
Xem chi tiết
Fan Inazuma Eleven
Xem chi tiết
Huỳnh Quang Sang
12 tháng 9 2020 lúc 9:15

a) \(\frac{2}{x-3}=\frac{5}{4}\)(ĐKXĐ : x khác 3)

=> \(2\cdot4=5\left(x-3\right)\)

=> \(8=5x-15\)

=> \(5x-15=8\)

=> \(5x=23\)=> x = 23/5 (tm)

b) \(\frac{x+1}{5}=\frac{4x-2}{3}\)

=> 3(x + 1) = 5(4x - 2)

=> 3x + 3 = 20x - 10

=> 3x + 3 - 20x + 10 = 0

=> 3x - 20x + 3 + 10 = 0

=> 3x - 20x = -13

=> -17x = -13

=> x = 13/17(tm)

2. a) Nếu đề như thế này : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và x - 2y + 2z = 10

=> \(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}=\frac{x-2y+2z}{2-6+10}=\frac{10}{6}=\frac{5}{3}\)

=> x = 5/3.2 = 10/3 , y = 5/3.3 = 5, z = 5/3.5 = 25/3 ( nên sửa lại đề bài này nhá)

b) Bạn tự làm

c) \(\frac{x}{y}=\frac{3}{5}\)=> \(\frac{x}{3}=\frac{y}{5}\)=> \(\frac{2x}{6}=\frac{3y}{15}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có : 

\(\frac{2x}{6}=\frac{3y}{15}=\frac{2x-3y}{6-15}=\frac{12}{-11}=-\frac{12}{11}\)

=> \(x=-\frac{12}{11}\cdot3=-\frac{36}{11},y=-\frac{12}{11}\cdot5=-\frac{60}{11}\)

d) Đặt x/3 = y/4 = k

=> x = 3k, y = 4k

Theo đề bài ta có => xy = 3k.4k = 12k2

=> 48 = 12k2

=> k2  = 48 : 12 = 4

=> k = 2 hoặc k = -2

Với k = 2 thì x = 3.2 = 6 , y = 4.2 = 8

Với k = -2 thì x = 3(-2) = -6 , y = 4(-2) = -8

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
12 tháng 9 2020 lúc 12:09

Bài 1.

a) \(\frac{2}{x-3}=\frac{5}{4}\)( ĐK : x khác 3 )

<=> 2.4 = ( x - 3 ).5

<=> 8 = 5x - 15

<=> 8 + 15 = 5x

<=> 23 = 5x

<=> 23/5 = x ( tmđk )

b) \(\frac{x+1}{5}=\frac{4x-2}{3}\)

<=> ( x + 1 ).3 = 5( 4x - 2 )

<=> 3x + 3 = 20x - 10

<=> 3x - 20x = -10 - 3

<=> -17x = -13

<=> x = 13/17

Bài 2.

a) \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\\x-2y+2z=10\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}\\x-2y+2z=10\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}=\frac{x-2y+2z}{2-6+10}=\frac{10}{6}=\frac{5}{3}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\cdot2=\frac{10}{3}\\y=\frac{5}{3}\cdot3=5\\z=\frac{5}{3}\cdot5=\frac{25}{3}\end{cases}}\)

b) \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{5}\\\frac{z}{4}=\frac{y}{6}\\x-y+z=20\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}\times\frac{1}{6}=\frac{y}{5}\times\frac{1}{6}\\\frac{z}{4}\times\frac{1}{5}=\frac{y}{6}\times\frac{1}{5}\\x-y+z=20\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{12}=\frac{y}{30}\\\frac{z}{20}=\frac{y}{30}\\x-y+z=20\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{12}=\frac{y}{30}=\frac{z}{20}\\x-y+z=20\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{12}=\frac{y}{30}=\frac{z}{20}=\frac{x-y+z}{12-30+20}=\frac{20}{2}=10\)

\(\Rightarrow\hept{\begin{cases}x=10\cdot12=120\\y=10\cdot30=300\\z=10\cdot20=200\end{cases}}\)

c) \(\hept{\begin{cases}\frac{x}{y}=\frac{3}{5}\\2x-3y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=\frac{y}{5}\\2x-3y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{2x}{6}=\frac{3y}{15}\\2x-3y=12\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{2x}{6}=\frac{3y}{15}=\frac{2x-3y}{6-15}=\frac{12}{-9}=-\frac{4}{3}\)

\(\Rightarrow\hept{\begin{cases}x=-\frac{4}{3}\cdot3=-4\\y=-\frac{4}{3}\cdot5=-\frac{20}{3}\end{cases}}\)

d) Đặt \(\frac{x}{3}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=3k\\y=4k\end{cases}}\)

xy = 48

<=> 3k.4k= 48

<=> 12k2 = 48

<=> k2 = 4

<=> k = ±2

+) Với k = 2 => \(\hept{\begin{cases}x=3\cdot2=6\\y=4\cdot2=8\end{cases}}\)

+) Với k = -2 => \(\hept{\begin{cases}x=3\cdot\left(-2\right)=-6\\y=4\cdot\left(-2\right)=-8\end{cases}}\)

Khách vãng lai đã xóa
Nguyễn Thị Bảo Trâm
Xem chi tiết
Phùng Minh Quân
25 tháng 3 2018 lúc 10:53

Bài 1 : 

Ta có : 

\(A=\frac{\frac{3}{4}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{7}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{6}+\frac{5}{8}}\)

\(A=\frac{3\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}{5\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{2}\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}\right)}\)

\(A=\frac{3}{5}+\frac{1}{\frac{5}{2}}\)

\(A=\frac{3}{5}+\frac{2}{5}\)

\(A=1\)

\(b)\) Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

Đo đó : 

\(\frac{y+z-x}{x}=2\)\(\Rightarrow\)\(y+z=3x\)\(\left(1\right)\)

\(\frac{z+x-y}{y}=2\)\(\Rightarrow\)\(x+z=3y\)\(\left(2\right)\)

\(\frac{x+y-z}{z}=2\)\(\Rightarrow\)\(x+y=3z\)\(\left(3\right)\)

Lại có : \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\)

Thay (1), (2) và (3) vào \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\) ta được : 

\(B=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)

Vậy \(B=8\)

Chúc bạn học tốt ~ 

Đào Thu Hoà
25 tháng 3 2018 lúc 11:08

bạn phùng minh quân câu 1 a tại sao lại rút gọn được \(\frac{3.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}{5\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}=\frac{3}{5}\) vậy nó không cùng nhân tử mà 

câu b \(\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{\left(y-y+y\right)+\left(-x+x+x\right)+\left(z+z-z\right)}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)sao lại ra bằng 2

(mình chỉ góp ý thôi nha tại mình làm thấy nó sai sai) 

Hoàng Phú Huy
25 tháng 3 2018 lúc 14:45

A=1

B=8

ĐÚNG K Z 

=)))))

Nguyễn Anh Thư
Xem chi tiết
Nguyễn Huy Tú
7 tháng 9 2021 lúc 19:23

mấy bài này thì bạn cứ đặt ẩn phụ cho dễ nhìn hơn mà giải nhé 

a, \(\hept{\begin{cases}\frac{1}{2x-y}+x+3y=\frac{3}{2}\\\frac{4}{2x-y}-5\left(x+3y\right)=-3\end{cases}}\)ĐK : \(2x\ne y\)

Đặt \(\frac{1}{2x-y}=t;x+3y=u\)hệ phương trình tương đương 

\(\hept{\begin{cases}t+u=\frac{3}{2}\\4t-5u=-3\end{cases}\Leftrightarrow\hept{\begin{cases}4t+4u=6\\4t-5u=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}9u=9\\4t=-3+5u\end{cases}}\Leftrightarrow\hept{\begin{cases}u=1\\t=\frac{-3+5}{4}=\frac{1}{2}\end{cases}}}\)

Theo cách đặt \(\hept{\begin{cases}x+3y=1\\\frac{1}{2x-y}=\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x+3y=1\\2x-y=2\end{cases}}\Leftrightarrow\hept{\begin{cases}2x+6y=2\\2x-y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}7y=4\\x=\frac{y+2}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{4}{7}\\x=\frac{9}{7}\end{cases}}}\)

Vậy hệ pt có một nghiệm (x;y) = (9/7;4/7) 

Khách vãng lai đã xóa
Trần Khả Nhi
Xem chi tiết
Đức Phạm
25 tháng 7 2017 lúc 11:58

a) \(\frac{2x}{3}=\frac{3y}{4}\Leftrightarrow8x=9y\Rightarrow x=\frac{9y}{8}\left(1\right)\)

     \(\frac{3y}{4}=\frac{4z}{5}\Leftrightarrow15y=16z\Rightarrow z=\frac{15y}{16}\left(2\right)\)

THay (1) và (2) vào biểu thức \(x+y+z=41\);ta được : \(\frac{9y}{8}+y+\frac{15y}{16}=41\)

\(\Rightarrow18y+16y+15y=656\Rightarrow y=\frac{656}{49}\)

Do đó : \(x=\frac{\frac{9.656}{49}}{8}=\frac{738}{49}\)

             \(z=\frac{\frac{15.656}{49}}{16}=\frac{615}{49}\)

KL : \(x=\frac{738}{49};y=\frac{656}{49};z=\frac{615}{49}\)

Đức Phạm
25 tháng 7 2017 lúc 12:08

b) Ta có : \(4x=3y\Rightarrow x=\frac{3y}{4}\)(1)  

                \(5y=6z\Rightarrow z=\frac{5y}{6}\)(2)

Thay (1) và (2) vào biểu thức \(x^2+y^2+z^2=500\);ta được :

\(\left(\frac{3y}{4}\right)^2+y^2+\left(\frac{5y}{6}\right)^2=500\)

\(\Rightarrow\frac{9y^2}{16}+y^2+\frac{25y^2}{36}=500\Rightarrow324y^2+576y^2+400y^2=288000\)

\(\Rightarrow1300y^2=288000\Rightarrow y^2=\frac{2880}{13}\Rightarrow\orbr{\begin{cases}y=\frac{24\sqrt{65}}{13}\\y=-\frac{24\sqrt{65}}{13}\end{cases}}\)

Với \(y=\frac{24\sqrt{65}}{13}\Rightarrow x=\frac{3\cdot\frac{24\sqrt{65}}{13}}{4}=\frac{18\sqrt{65}}{13};z=\frac{5\cdot\frac{24\sqrt{65}}{13}}{6}\)

     \(y=-\frac{24\sqrt{65}}{13}\Rightarrow x=-\frac{18\sqrt{65}}{13};z=\frac{5\cdot-\frac{24\sqrt{65}}{13}}{6}\)

Võ Đông Anh Tuấn
Xem chi tiết
Không Back
Xem chi tiết
Kiều Vũ Linh
27 tháng 10 2020 lúc 11:09

b) 4x = 3y \(\Rightarrow\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}\)

Và x2 + y2 = 100

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

Ta có:

\(\frac{x^2}{9}=4\Rightarrow x^2=4.9=36\Rightarrow x=6;x=-6\)

\(\frac{y^2}{16}=4\Rightarrow y^2=16.9=144\Rightarrow x=12;x=-12\)

Vậy ta có các cặp số x, y sau:

x = 6; y = 12

hoặc x = 6; y = -12

hoặc x = -6; y = 12

hoặc x = -6; y = -12

Khách vãng lai đã xóa
Kiều Vũ Linh
27 tháng 10 2020 lúc 13:42

d) \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x^2}{2}=\frac{xy}{3}\)

Mà xy = 6

\(\Rightarrow\frac{x^2}{2}=\frac{xy}{3}=\frac{6}{3}=2\)

Ta có:

\(\frac{x^2}{2}=2\Rightarrow x^2=2.2=4\Rightarrow x=2;x=-2\)

Với x = 2, ta có:

\(\frac{2y}{3}=2\Rightarrow y=\frac{2.3}{2}=\frac{6}{2}=3\)

Với x = -2, ta có:

\(\frac{-2y}{3}=2\Rightarrow y=\frac{2.3}{-2}=\frac{-6}{2}=-3\)

Vậy có các cặp giá trị x, y sau:

x = 2; y = 3

Hoặc x = -2; y = -3

Khách vãng lai đã xóa
Kiều Vũ Linh
27 tháng 10 2020 lúc 13:46

\(\frac{x}{4}=\frac{y}{5}\Rightarrow\frac{x^2}{4}=\frac{xy}{5}\)

Mà xy = 20

\(\Rightarrow\frac{x^2}{4}=\frac{xy}{5}=\frac{20}{5}=4\)

Ta có:

\(\Rightarrow\frac{x^2}{4}=4\Rightarrow x^2=4.4=16\Rightarrow x=4;x=-4\)

Với x = 4, ta có:

\(\frac{4y}{5}=4\Rightarrow y=\frac{4.5}{4}=\frac{20}{4}=5\)

Với x = -4, ta có:

\(\frac{-4y}{5}=4\Rightarrow y=\frac{4.5}{-4}=\frac{-20}{4}=-5\)

Vậy có các cặp giá trị x, y sau:

x = 4; y = 5

hoặc x = -4; y = -5

Khách vãng lai đã xóa
Mangekyou sharingan
Xem chi tiết
Edogawa Conan
23 tháng 8 2019 lúc 9:10

Ta có : \(\frac{x-5}{5x-1}=\frac{4x-10}{20x+4}\)

=> \(\frac{x-5}{5x-1}=\frac{2x-5}{10x+2}\)

=> (x - 5)(10x + 2) = (2x - 5)(5x - 1)

=> 10x2  + 2x - 50x - 10 = 10x2 - 2x - 25x + 5

=> 10x2 - 48x - 10x2 + 27x = 5 + 10

=> -21x = 15

=> x = 15 : (-21) = -5/7

Thay x = -5/7 vào \(\frac{x-5}{5x-1}=\frac{y}{3}\)

=> \(\frac{-\frac{5}{7}-5}{5.\left(-\frac{5}{7}\right)-1}=\frac{y}{3}\)

=> \(\frac{-\frac{40}{7}}{-\frac{32}{7}}=\frac{y}{3}\)

=> \(\frac{5}{4}=\frac{y}{3}\)

=> 4y = 15

=> y = 15/4

Vậy ...

Ta có: \(\frac{5}{y}=\frac{3}{x}\) => \(\frac{x}{3}=\frac{y}{5}\) => \(\frac{x^2}{9}=\frac{y^2}{25}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x^2}{9}=\frac{y^2}{25}=\frac{y^2+x^2}{25+9}=\frac{125}{34}\)

=> \(\hept{\begin{cases}\frac{x^2}{9}=\frac{125}{34}\\\frac{y^2}{25}=\frac{125}{34}\end{cases}}\)  => \(\hept{\begin{cases}x^2=\frac{125}{34}.9=\frac{1125}{34}\\y^2=\frac{125}{34}.25=\frac{3125}{34}\end{cases}}\) => \(\hept{\begin{cases}x=\pm\frac{15\sqrt{170}}{34}\\y=\pm\frac{25\sqrt{170}}{34}\end{cases}}\)

Trần Khởi My
Xem chi tiết
Không Tên
24 tháng 7 2018 lúc 21:52

mk làm mẫu 2 bài đầu nhé, các bài còn lại bạn làm tương tự, các bài này đều áp dụng tính chất dãy tỉ số bằng nhau

1)  Áp dụng tính chất dãy tỉ số bằng nhau ta có     

\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2\)

suy ra:  \(\frac{x}{3}=2\)=>  \(x=6\)

            \(\frac{y}{4}=2\)=>  \(y=8\)

Vậy...

2)  Áp dụng tính chất dãy tỉ số bằng nhau ta có:

   \(\frac{x}{5}=\frac{y}{3}=\frac{x-y}{5-3}=\frac{20}{2}=10\)

suy ra:  \(\frac{x}{5}=10\)=>  \(x=50\)

             \(\frac{y}{3}=10\)=>  \(y=30\)

Vậy...