tìm GTNN của biểu thức x^2/4-3x+16
Cho x > 0. Tìm GTNN của biểu thức \(A=\frac{3x^4+16}{x^3}\).
Cách 1:
\(A=\frac{3x^4+16}{x^3}=\frac{x^4+x^4+x^4+16}{x^3}\)
\(\ge\frac{4\sqrt[4]{16.x^{12}}}{x^3}=4.2=8\)
Vậy GTNN là 8 đạt được tại x = 2
Cách 2:
\(A=\frac{3x^4+16}{x^3}=8+\frac{3x^4-8x^3+16}{x^3}\)
\(=8+\frac{\left(x-2\right)^2\left(3x^2+4x+4\right)}{x^3}\ge8\)
Dấu = xảy ra khi x = 2
với x = -1 thì A= -19 đáp án của bạn sai rùi tính lại đi (^-^)
Với x > 0, tìm GTNN của biểu thức A =( 3x4 + 16 )/x3
Cảm ơn đã giúp !!!
Tìm GTNN của biểu thức: x^4+3x^2-10
1. Cho x>0 tìm GTNN của biểu thức:
A= $frac\{3x4+16}{x3}
Tìm GTNN của biểu thức S = x^2 - 4x + 4/3x^2 + 1
Tìm GTNN của biểu thức: A=|x-2|+|2x-3|+|3x-4|
tìm GTNN của biểu thức sau x^4-2x^3+3x^2-4x+2005
\(x^4-2x^3+3x^2-4x+2005=\left(x^4-2x^3+x^2\right)+2\left(x^2-2x+1\right)+2003=\left(x^2-x\right)^2+2\left(x-1\right)^2+2003\)
Vì \(\left(x^2-x\right)^2\ge0\forall x,\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow x^4-2x^3+3x^2-4x+2005\ge0+0+2013=2013\)
\(ĐTXR\Leftrightarrow x=1\)
a) tìm GTLN của biểu thức P= (3x2 + 17): (x2+4)
b) tìm GTNN của biểu thức Q= (x2+4) : x
Tìm GTNN của biểu thức
x^4+3x+2