Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 6 2017 lúc 6:56

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 10 2019 lúc 6:03

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 5 2019 lúc 7:36

Chọn B.

Ta có 

Truc Thanh
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 9 2021 lúc 21:23

Bằng \(\overrightarrow{AB}\) là \(\overrightarrow{DC}\)

Bằng \(\overrightarrow{OB}\) là \(\overrightarrow{DO}\)

Có độ dài bằng OB là \(\overrightarrow{OB};\overrightarrow{BO};\overrightarrow{OD};\overrightarrow{DO}\)

Ikino Yushinomi
12 tháng 9 2021 lúc 21:26

a) Bằng vectơ AB :
\(\overrightarrow{DC}\)
Bằng vectơ OB :
\(\overrightarrow{DO}\)
b)Có độ dài bằng OB :
\(\overrightarrow{OD}, \overrightarrow{DO}, \overrightarrow{BO}\)
 

Nguyễn văn công
Xem chi tiết
Bap xoai
Xem chi tiết

Bài 4:

a: Xét ΔSAB có M,N lần lượt là trung điểm của SA,SB

=>MN là đường trung bình của ΔSAB

=>MN//AB

mà AB//CD

nên MN//CD

Ta có; MN//CD
CD⊂(SCD)

MN không thuộc mp(SCD)

Do đó: MN//(SCD)

b: Sửa đề: MO//(SBC)

ABCD là hình bình hành tâm O

=>O là trung điểm chung của AC và BD

Xét ΔSAC có

M,O lần lượt là trung điểm của AS,AC
=>MO là đường trung bình của ΔSAC

=>MO//SC
mà SC⊂(SBC) và MO không thuộc mp(SBC)

nên MO//(SBC)

Bài 3:

a: Xét ΔSCD có

M,N lần lượt là trung điểm của SD,SC
=>MN là đường trung bình của ΔSCD

=>MN//CD

mà CD//AB

nên MN//AB

mà AB⊂(SAB) và MN không thuộc mp(SAB)

nên MN//(SAB)

Ta có: MN//AB

AB⊂(ABCD)

MN không thuộc mp(ABCD)

Do đó: MN//(ABCD)

b: ABCD là hình bình hành tâm O

=>O là trung điểm chung của BD và AC

Xét ΔSDB có

M,O lần lượt là trung điểm của DS,DB

=>MO là đường trung bình của ΔSDB

=>MO//SB

mà SB⊂(SAB) và MO không thuộc mp(SAB)

nên MO//(SAB)

Manh Duy
Xem chi tiết
Nguyễn Thị Thùy
Xem chi tiết
Hoàng Huy
Xem chi tiết
Phạm Lan Hương
30 tháng 12 2020 lúc 14:00

Câu 1: giả sử:\(\overrightarrow{BD}-\overrightarrow{BA}=\overrightarrow{OC}-\overrightarrow{OB}\Leftrightarrow\overrightarrow{BA}+\overrightarrow{AD}-\overrightarrow{BA}=\overrightarrow{OC}+\overrightarrow{BO}\)

\(\Leftrightarrow\overrightarrow{AD}=\overrightarrow{BC}\)(luôn đúng vì ABCD lad hình bình hành)

giả sử: \(\overrightarrow{BC}-\overrightarrow{BD}+\overrightarrow{BA}=\overrightarrow{0}\Leftrightarrow\overrightarrow{BC}-\overrightarrow{BC}+\overrightarrow{DC}+\overrightarrow{BA}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{BB}+\overrightarrow{DD}=\overrightarrow{0}\)(LUÔN ĐÚNG)

câu 2 :GIẢ SỬ:

 \(\overrightarrow{AB}+\overrightarrow{OA}=\overrightarrow{OB}\Leftrightarrow\overrightarrow{AO}+\overrightarrow{OB}+\overrightarrow{OA}+\overrightarrow{BO}=\overrightarrow{0}\)(luôn đúng)

giả sử: \(\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow{MB}+\overrightarrow{MD}\\ \Leftrightarrow\overrightarrow{MB}+\overrightarrow{BA}+\overrightarrow{MD}+\overrightarrow{DC}=\overrightarrow{MB}+\overrightarrow{MD}\Leftrightarrow\overrightarrow{0}=\overrightarrow{0}\)