Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Bảo Ngọc
Xem chi tiết
Nguyễn Quốc Khánh
29 tháng 12 2015 lúc 22:11

Ta có

\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}\)

\(\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

Áp dụng cô si cho từng cặp

\(\frac{a}{c}+\frac{c}{a}\ge2;\frac{a}{b}+\frac{b}{a}\ge2;\frac{b}{c}+\frac{c}{b}\ge2\)

=>....

Dấu = xảy ra <=>a=b=c

 

 

hoang vl
Xem chi tiết
Edogawa Conan
15 tháng 3 2017 lúc 22:21

Hỏi đáp Toán

Tho Nguyen
15 tháng 3 2017 lúc 22:22

mô đây , đi hc thêm à chớ bài thầy hải ko có hay BDHSG

Nguyễn Ngọc Linh
15 tháng 3 2017 lúc 22:24

Này #Edogawa Conan, đây là chỗ học chứ không phải chỗ ddeerr đăng linh tinh đâu. Bạn ko nghe cô Thủy nói à? Lần 1 cảnh cáo, lần 2 khóa nick đó. Thế nên đừng có đăng mấy cái ko liên quan tới chủ đề.

nguyen thi minh ngoc
Xem chi tiết
Ngô Tấn Đạt
20 tháng 5 2018 lúc 8:47

\(a+b+c=1\\ \Rightarrow\left(a+b+c\right)^2=1\\ \left(a+b+c\right)^2\ge4a\left(b+c\right)\\ \Rightarrow1\ge4a\left(b+c\right)\\ \Rightarrow b+c\ge4a\left(b+c\right)^2\ge16abc\)

Áp dụng \(\left(x+y\right)^2\ge4xy\)

Tô Ngọc Hà
18 tháng 5 2018 lúc 22:02

1 = (a + b+ c)^2 >= 4a(b + c)
<=> b +c >= 4a(b + c)^2
Mà (b + c)^2 >= 4bc
Vậy b + c >= 4a.4bc = 16abc

Tô Ngọc Hà
18 tháng 5 2018 lúc 22:04

ta có a>0,b+c>0

áp dụng Bất đẳng thức cosi ta có:

a+b+c>=2nhân với căn của a.(b+c)

=>(a+b+c)^2=4.a.(b+c)

linh
Xem chi tiết
Doãn Thành Nam
Xem chi tiết
nguyen duy thanh
Xem chi tiết
nguyen nam hung
Xem chi tiết
JOKER_Mizukage Đệ tứ
Xem chi tiết
JOKER_Mizukage Đệ tứ
Xem chi tiết