tìm x biết 9(x-1)^2x=2(x^2-x+1)^2
Bài 2: Tìm x biết:
1,x\(^2\)+4x+4=25
2,(5-2x)\(^2\)-16=0
3,(x-3)\(^3\)-(x-3)(x\(^2\)+3x+9)+9(x+1)\(^2\)=15
4,3(x+2)\(^2\)+(2x-1)\(^2\)-7(x-3)9x+3)=36
5,(x-3)(x\(^2\)+3x+9)+x(x+2)(2-x)=1
6,(2x+1)\(^2\)-4(x+2)\(^2\)=9
7,(x+3)\(^{^{ }2}\)-(x-4)(x+8)=1
1: =>x^2+4x-21=0
=>(x+7)(x-3)=0
=>x=3 hoặc x=-7
2: =>(2x-5-4)(2x-5+4)=0
=>(2x-9)(2x-1)=0
=>x=9/2 hoặc x=1/2
3: =>x^3-9x^2+27x-27-x^3+27+9(x^2+2x+1)=15
=>-9x^2+27x+9x^2+18x+9=15
=>18x=15-9-27=-21
=>x=-7/6
6: =>4x^2+4x+1-4x^2-16x-16=9
=>-12x-15=9
=>-12x=24
=>x=-2
7: =>x^2+6x+9-x^2-4x+32=1
=>2x+41=1
=>2x=-40
=>x=-20
Tìm x, biết:
a) (x-3)(x^2+ 3x +9)+x(2+x)(2x-x)=1
b) (x+3)^3 -x(3x+1)^2+(2x+1)(4x-2x+1)=54
tìm x biết 9(x-1)^2x=2(x^2-x+1)^2
BT7: Tìm x, biết a, x^2+2x+1=9 b, x^2-1=15 c, 19-2x^2=1
`@` `\text {Ans}`
`\downarrow`
`a,`
`x^2 + 2x + 1 = 9`
`=> x^2 + 2x + 1 - 9 = 0`
`=> x^2 + 2x - 8 = 0`
`=> x^2 + 4x - 2x - 8 = 0`
`=> (x^2 + 4x) - (2x + 8) = 0`
`=> x(x + 4) - 2(x + 4) = 0`
`=> (x-2)(x+4) = 0`
`=>`\(\left[{}\begin{matrix}x-2=0\\x+4=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
Vậy, `x \in {2; 4}`
`b,`
`x^2 - 1 = 15`
`=> x^2 = 15 + 1`
`=> x^2 = 16`
`=> x^2 = (+-4)^2`
`=> x = +-4`
Vậy, `x \in {4; -4}`
`c)`
`19 - 2x^2 = 1`
`=> 2x^2 = 19 - 1`
`=> 2x^2 = 18`
`=> x^2 = 18 \div 2`
`=> x^2 = 9`
`=> x^2 = (+-3)^2`
`=> x = +-3`
Vậy, `x \in {3; -3}.`
BT1: cho -3x(x+5)=-3x2-15x
(x+3)(x+2)=x2+5x+6
Tìm x biết:
--3x(x+5)+(x+3)(x+2)=7
BT2:Cho(2x+1)2=4x2+4x+1
(2x+1)(2x-1)=4x2-1
Tìm x biết:
(2x+1)2-(2x+1)(2x-1)=19
BT3: Tìm x biết:
a)x(x+1)-x(x+5)=9
b)4x2(x+5)-8x(x+7)=13
Bài 2: Tìm x, biết: a) (x+2)(x² -2x+4)-x(x²+2)=15 b) (x-2)³-(x-4)(x² + 4x+16) + 6(x+1)=49 c) (x - 1)³ + (2 - x)(4 + 2x + x²)+ 3x(x + 2) = 16 d) (x - 3)³ - (x - 3)(x² + 3x + 9) + 9(x + 1)² = 15
a: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Leftrightarrow x^3+8-x^3-2x=15\)
\(\Leftrightarrow2x=-7\)
hay \(x=-\dfrac{7}{2}\)
b: Ta có: \(\left(x-2\right)^3-\left(x-4\right)\left(x^2+4x+16\right)+6\left(x+1\right)^2=49\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+64+6\left(x+1\right)^2=49\)
\(\Leftrightarrow-6x^2+12x+56+6x^2+12x+6=49\)
\(\Leftrightarrow24x=-13\)
hay \(x=-\dfrac{13}{24}\)
: Tìm x, biết:
a) 3x( 4x- 1) - 2x(6x- 3 )=30 b) 2x(3-2x) + 2x(2x-1)=15
c) (5x-2)(4x-1) + (10x +3)(2x - 1)=1 d) (x+2) (x+2)- (x -3)(x+1) = 9
e) (4x+1)(6x-3) = 7 + (3x – 2)(8x + 9) g) (10x+2)(4x- 1)- (8x -3)(5x+2) =14
`@` `\text {Ans}`
`\downarrow`
`a)`
`3x(4x-1) - 2x(6x-3) = 30`
`=> 12x^2 - 3x - 12x^2 + 6x = 30`
`=> 3x = 30`
`=> x = 30 \div 3`
`=> x=10`
Vậy, `x=10`
`b)`
`2x(3-2x) + 2x(2x-1) = 15`
`=> 6x- 4x^2 + 4x^2 - 2x = 15`
`=> 4x = 15`
`=> x = 15/4`
Vậy, `x=15/4`
`c)`
`(5x-2)(4x-1) + (10x+3)(2x-1) = 1`
`=> 5x(4x-1) - 2(4x-1) + 10x(2x-1) + 3(2x-1)=1`
`=> 20x^2-5x - 8x + 2 + 20x^2 - 10x +6x - 3 =1`
`=> 40x^2 -17x - 1 = 1`
`d)`
`(x+2)(x+2)-(x-3)(x+1)=9`
`=> x^2 + 2x + 2x + 4 - x^2 - x + 3x + 3=9`
`=> 6x + 7 =9`
`=> 6x = 2`
`=> x=2/6 =1/3`
Vậy, `x=1/3`
`e)`
`(4x+1)(6x-3) = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + 24x^2 +11x - 18`
`=> 24x^2 - 6x - 3 = 24x^2 + 18x -11`
`=> 24x^2 - 6x - 3 - 24x^2 + 18x + 11 = 0`
`=> 12x +8 = 0`
`=> 12x = -8`
`=> x= -8/12 = -2/3`
Vậy, `x=-2/3`
`g)`
`(10x+2)(4x- 1)- (8x -3)(5x+2) =14`
`=> 40x^2 - 10x + 8x - 2 - 40x^2 - 16x + 15x + 6 = 14`
`=> -3x + 4 =14`
`=> -3x = 10`
`=> x= - 10/3`
Vậy, `x=-10/3`
a, (x-1)*x+x^2-7=8
b, (2x+1)*x-(2x-1)=9
c, (x-1)*(x+1)-(x^2+9)=12
d, (3x+1)*(x+1)-x(3x+1)
e, (2x-1)*x^2*(x^3-x^2+x-1)=10
tìm x biết
Tìm x biết :
a) x^2 - 3x + 2 (x-3) = 0
b) (x-1)(x+1) + x (x-9) = 2x^2 - 4
c) x (x-3) - 3x + 9 = 0
d) x (x+2) - (x-3)(x+3) = 5
đ) 2x (x+1) - (2x+1)(x-3) = 6
\(x^2-3x+2.\left(x-3\right)=0\)
\(x.\left(x-3\right)+2.\left(x-3\right)=0\)
\(\left(x-3\right).\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
\(x.\left(x-3\right)-3x+9=0\)
\(x.\left(x-3\right)-3.\left(x-3\right)=0\)
\(\left(x-3\right)^2=0=>x=3\)
a,\(x^2-3x+2\left(x-3\right)=0.\)
\(\Leftrightarrow x^2-3x+2x-6=0\)
\(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow\left(x^2-2x\right)+\left(3x-6\right)=0\)
\(\Leftrightarrow x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)