`@` `\text {Ans}`
`\downarrow`
`a,`
`x^2 + 2x + 1 = 9`
`=> x^2 + 2x + 1 - 9 = 0`
`=> x^2 + 2x - 8 = 0`
`=> x^2 + 4x - 2x - 8 = 0`
`=> (x^2 + 4x) - (2x + 8) = 0`
`=> x(x + 4) - 2(x + 4) = 0`
`=> (x-2)(x+4) = 0`
`=>`\(\left[{}\begin{matrix}x-2=0\\x+4=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
Vậy, `x \in {2; 4}`
`b,`
`x^2 - 1 = 15`
`=> x^2 = 15 + 1`
`=> x^2 = 16`
`=> x^2 = (+-4)^2`
`=> x = +-4`
Vậy, `x \in {4; -4}`
`c)`
`19 - 2x^2 = 1`
`=> 2x^2 = 19 - 1`
`=> 2x^2 = 18`
`=> x^2 = 18 \div 2`
`=> x^2 = 9`
`=> x^2 = (+-3)^2`
`=> x = +-3`
Vậy, `x \in {3; -3}.`