Tim gia tri x duong thoa man?
|x-9|+(-|2x|)=0
tim gia tri cua bieu thuc X=2x^5-5y^3+2015 tai x,y thoa man /x-1/=(y+2)^20=0
\(\left|x-1\right|+\left(y+2\right)^{20}=0\)
=>x-1=0 và y+2=0
=>x=1 và y=-2
Thay x=1 và y=-2 vào X, ta được:
\(X=2\cdot1^5-5\cdot\left(-2\right)^3+2015\)
\(=2017+40=2057\)
cho x, y nguyen duong thoa man xy-5x+2y=30. khi do tong cac gia tri cua x tim duoc la?
gia tri x<0 thoa man gia tri tuyet doi cua 2x - 1 = 3mu 2 la x=....
cho x,y,z la cac so thuc duong thoa man x+y+z=1 tim gia tri nho nhat cua bieu thuc M=1/16x+1/4y+1/z
\(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\)
\(M=\frac{1}{16x}+\frac{4}{16y}+\frac{16}{16z}\)
\(M=\frac{1^2}{16x}+\frac{2^2}{16y}+\frac{4^2}{16z}\)
\(M\ge\frac{\left(1+2+4\right)^2}{16\left(x+y+z\right)}\)
\(=\frac{49}{16}\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}=\frac{1+2+4}{16\left(x+y+z\right)}=\frac{7}{16}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{7}\\y=\frac{2}{7}\\z=\frac{4}{7}\end{cases}}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow x+y+z\ge3\sqrt[3]{xyz}\)
\(\Rightarrow1\ge3\sqrt[3]{xyz}\)
\(\Rightarrow\frac{1}{27}\ge xyz\)
Ta có \(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{64xyz}}\)( 1 )
Xét \(3\sqrt[3]{\frac{1}{64xyz}}\)
Ta có \(\frac{1}{27}\ge xyz\)
\(\Rightarrow\frac{64}{27}\ge64xyz\)
\(\Rightarrow\frac{27}{64}\le\frac{1}{64xyz}\)
\(\Rightarrow\frac{9}{4}\le3\sqrt[3]{\frac{1}{64xyz}}\)( 2 )
Từ ( 1 ) và ( 2 )
\(\Rightarrow M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{64xyz}}\ge\frac{9}{4}\)
Vậy \(M_{min}=\frac{9}{4}\)
\(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}=\frac{1}{16x}+\frac{4}{16y}+\frac{16}{16z}=\frac{1^2}{16x}+\frac{2^2}{16y}+\frac{4^2}{16z}\)
Áp dụng bất đẳng thức Cauchy Schawrz dạng Engel ta được:
\(M=\frac{1^2}{16x}+\frac{2^2}{16y}+\frac{4^2}{16z}\ge\frac{\left(1+2+4\right)^2}{16x+16y+16z}=\frac{7^2}{16\left(x+y+z\right)}=\frac{49}{16.1}=\frac{49}{16}\)
Dấu "=" xảy ra khi \(\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}\). Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}=\frac{1+2+4}{16x+16y+16z}=\frac{7}{16\left(x+y+z\right)}=\frac{7}{16.1}=\frac{7}{16}\)
=>\(x=\frac{1}{7};y=\frac{2}{7};z=\frac{4}{7}\)
Vậy Mmin=49/16 khi \(x=\frac{1}{7};y=\frac{2}{7};z=\frac{4}{7}\)
giup to 3 bai nay
1. gia tri x lon nhat thoa man : x2(5x-20)=15x
2 gia tri x >0 de -3x4+12x2+1 dat gia tri lon nhat
3. tap hop cac gia tri cua x thoa man : x4+x3+2x-4=0
tim gia tri cua x thoa man 3x - 5.2.4 + 2.23=0
3x - 5.2.4 + 2.23=0
3x-40+16=0
3x-24=0
3x=24
x=8
Cho hai so Thưc duong x, y thoa man x>=2y.Tim gia tri nho nhat cua bieu thuc P=(2x^2+y^2-2xy):xy
cho hai so duong xy thoa man \(\frac{4}{x^2}+\frac{5}{y^2}\ge9\) tim gia tri nho nhat cua bieu thuc\(Q=2x^2+\frac{6}{x^2}+3y^2+\frac{8}{y^2}\)
\(Q=2x^2+\frac{2}{x^2}+3y^2+\frac{3}{y^2}+\frac{4}{x^2}+\frac{5}{y^2}\)
Áp dụng cô si ,ta có
\(2x^2+\frac{2}{x^2}\ge2\sqrt{2x^2\cdot\frac{2}{x^2}}=4\)
\(3y^2+\frac{3}{y^2}\ge2\sqrt{3y^2\cdot\frac{3}{y^2}}=6\)
\(\Rightarrow Q\ge4+6+9=19\)
Dấu "=" xảy ra khi x=y=1
so cac gia tri nguyen cua x thoa man (2x+3)(2x+10)<0
Vì (2x + 3)(2x + 10) < 0
=> 2x + 3 và 2x + 10 trái dấu.
Mà 2x + 3 < 2x + 10
=> 2x + 3 < 0 => 2x < -3
=> 2x + 10 > 0 => 2x > -10
=> -10 < 2x < -3 => 2x \(\in\) {-8; -6; -4}
=> x \(\in\){-4; -3; -2}
Để (2x+3)(2x+10)<0 thì 2x+3 và 2x+10 trái dấu
Do vậy x<0 vì nếu x>=0 thì (2x+3)(2x+10)>0 trái với giả thiết
Lưu ý: 2x+3<2x+10 nên ko thể để 2x+10<0 suy ra 2x+3<0 và tích của nó >0 trái với đề bài. Do đó 2x+10>0, 2x>-10, x>-5
Vậy -5<x<0