Rút gọn biểu thức: C = a 2 − a a + a + 1 − a 2 + a a − a + 1 + a + 1
2 a. rút gọn biểu C = \(\dfrac{2x^{\text{2}}-x}{\text{x }-1}+\dfrac{x+1}{1-x}+\dfrac{2-x^2}{x-1}\)
b. Rút gọn biểu thức D = \(\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{\text{a}}-1}\right):\dfrac{\sqrt{\text{a}}+1}{a-2\sqrt{a}+1}\)
Vậy khi rút gọn một biểu thức hửu tỉ và một biểu thức chứa căn có tìm điều kiện xác định không?
\(a,C=\dfrac{2x^2-x-x-1+2-x^2}{x-1}\left(x\ne1\right)\\ C=\dfrac{x^2-2x+1}{x-1}=\dfrac{\left(x-1\right)^2}{x-1}=x-1\\ b,D=\dfrac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\left(a>0;a\ne1\right)\\ D=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
Có
Rút gọn biểu thức: A = a 2 + 2 a 2 a + 10 + a − 5 a + 50 − 5 a 2 a ( a + 5 ) .
a) Tìm điều kiện xác định của biểu thức A;
b) Rút gọn biểu thức;
c) Tính giá trị của biểu thức tại a = -1
d) Tìm giá trị của a để A = 0.
a) a ≠ 0 , a ≠ − 5
b) Ta có A = a 3 + 4 a 2 − 5 a 2 a ( a + 5 ) = a ( a − 1 ) ( a + 5 ) 2 a ( a + 5 ) = a − 1 2
c) Thay a = -1 (TMĐK) vào a ta được A = -1
d) Ta có A = 0 Û a = 1 (TMĐK)
A =
a) Tìm điều kiện của để biểu thức A xác định
b) Rút gọn biểu thức A
c)Tính A khi = 4 - 2
B1 Cho biểu thức: A=(-a+b-c)-(-a-b-c)
a) Rút gọn A
b)Tính giá trụ của A khi a = 1; b = -1; c = -2
B2 Cho biểu thức A =(-m+n-p)-(-m-n-p)
a) Rút gọn A
b)Tính giá trị của A khi m = 1; n = -1; p = -2
B3 Cho biểu thức : A=(-2a+3b-4c)-(-2a-3b-4c)
a) Rút gọn A
b)Tính giá trị của A khi a = 2012;b = -1;c = -2013
Cho biểu thức A = ( -a - b + c ) - ( -2.a - 2.b - c ) Rút gọn A
A = ( -a - b + c ) - ( -2.a - 2.b - c )
A = -a -b + c - 2.a + 2.b + c
A = -3a + ( -3b )
A = -3 . ( a+b )
rút gọn biểu thức (a+b+c)^2 +(b+c-a)^2+(c+a-b)^2+(a+b-c)^2
Ta có
(a+b+c)2+(b+c-a)2+(c+a-b)2+(a+b-c)2= [(a+b)+c]2+[(b-a)+c]2+[(a-b)+c]2+[(a+b)-c]
=(a+b)2+2c(a+b)+c2+(b-a)2+2c(b-a)+c2+(a-b)2+2c(a-b)+c2+(a+b)2-2c(a+b)+c2
=2(a+b)2+2(a-b)2+4c2( vì (a-b)2=(b-a)2)
Cho biểu thức 2 1 2 1 1 K a a a) Tìm điều kiện của a để biểu thức K xác định. b) Rút gọn biểu thức K c) Tính giá trị biểu thức K khi 1 2
\(a.a\ne\pm1\)
\(b.K=\dfrac{1}{a+1}+\dfrac{2}{a^2-1}=\dfrac{a-1}{\left(a-1\right)\left(a+1\right)}+\dfrac{2}{\left(a-1\right)\left(a+1\right)}=\dfrac{a+1}{\left(a-1\right)\left(a+1\right)}=\dfrac{1}{a-1}\)
\(c.K=\dfrac{1}{1-\dfrac{1}{2}}=\dfrac{1}{\dfrac{1}{2}}=2\)
Cho biểu thức: A = (-a + b - c) - (-a -b -c)
B = (-2a + 3b - ac) - (-2a - 3b - 4c)
Rút gọn 2 biểu thức trên
A=(-a+b-c)-(-a-b-c)
A=-a+b-c+a+b+c
A=(-a+a)+(b+b)-(c-c)
A=0+2b-0
A=2b
B=(-2a+3b-ac)-(-2a-3b-4c)
B=-2a+3b-ac+2a+3b+4c
B=(-2a+2a)-(3b-3b)-(ac-4c)
B=ac-4c
B=(a-4)c
[a+b+c]^2+[a+b-c]^2-2[a+b]^2
Rút gọn biểu thức
Ta có: (a+b+c)2 +(a+b-c)2-2(a+b)2
=a2+b2+c2+2ab+2ac+2bc+a2+b2+c2+2ab-2ac-2bc-2(a2+2ab+b2)=2a2+2b2+2c2+4ab+(2ac-2ac)+(2bc-2bc)-2a2-4ab-2b2=(2a2-2a2)+(2b2-2b2)+(4ab-4ab)+c2=c2Ở chỗ (a+b+c)2 bạn có thể tách ra thành (a+b+c)(a+b+c) rồi nhân chúng lại, tương tự với (a+b-c)2 và ở (a+b)2 bạn dùng hằng đẳng thức nhé!
bài tớ và kết bạn nhé!! :))
Cho biểu thức m =a căn a /a-4 -a/căn a+2 - căn a / căn a-2 a) tìm điều kiện của a để biểu thức m xác định b) rút gọn biểu thức m c) giá trị biểu thức m tại a=9
a: ĐKXĐ: a>=0; a<>4
b: \(M=\dfrac{a\sqrt{a}-a\sqrt{a}+2a-a-2\sqrt{a}}{a-4}=\dfrac{a-2\sqrt{a}}{a-4}=\dfrac{\sqrt{a}}{\sqrt{a}+2}\)
c: Khi a=9 thì \(M=\dfrac{3}{3+2}=\dfrac{3}{5}\)