Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, S A ⊥ A B C và AH là đường cao của ∆ABC. Khẳng định nào sau đây sai?
A. S B ⊥ B C
B. A H ⊥ B C
C. S B ⊥ A C
D. A H ⊥ S C
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA ⊥ (ABC) và AH là đường cao của tam giác SAB. Khẳng định nào sau đây sai ?
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, S A ⊥ A B C và AH là đường cao của ∆SAB Khẳng định nào sau đây sai?
A. S B ⊥ B C
B. A H ⊥ B C
C. S B ⊥ A C
C. A H ⊥ S C
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, đỉnh S cách đều các điểm A,B,C. Biết AC = 2a,BC = a; góc giữa đường thẳng SB và mặt đáy (ABC) bằng 60 o . Tính theo a thể tích V của khối chóp S.ABC?
A. V = a 6 3 4 .
B. V = a 6 3 6 .
C. V = a 3 2 .
D. V = a 6 3 12 .
Đáp án C.
Hướng dẫn giải: Gọi H là trung điểm AC.
Do tam giác ABC vuông tại B nên H là tâm đường tròn ngoại tiếp tam giác ABC.
Đỉnh S cách đều các điểm A, B,C nên hình chiếu của S trên mặt đáy (ABC) trùng với tâm đường tròn ngoại tiếp tam giác ABC
suy ra S H ⊥ ( A B C )
Tam giác vuông SBH, có
Tam giác vuông ABC ,
có A B = A C 2 - B C 2 = a 3
Diện tích tam giác vuông
S ∆ A B C = 1 2 B A . B C = a 3 2 2
Vậy V S . A B C = 1 3 S ∆ A B C . S H = a 3 2
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = BC = 2a. Tam giác SAC cân tại S có đường cao và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính khoảng cách giữa hai đường thẳng AB và SC theo a.
A . a 3 3
B . 2 a 3
C . a 3 2
D . a
Đáp án A.
Theo giả thiết ta có SO ⊥ (ABC). Gọi D là điểm đối xưng với B qua O
=> ABCD là hình vuông => AB//CD
=> d(AB;SC) = d(AB;(SCD)) = d(E;(SCD)) = 2d(O;(SCD))(Với E, F lần lượt là trung điểm của AB và CD).
Áp dung tính chất tứ diện vuông cho tứ diện OSCD ta có:
Cho hình chóp S.ABC có SA ⊥ ( A B C ) và tam giác ABC vuông tại B, AH là đường cao của tam giác SAB . Khẳng định nào sau đây sai
Cho hình chóp S.ABC có S A ⊥ A B C và tam giác ABC vuông tại B, AH là đường cao của tam giác SAB . Khẳng định nào sau đây sai
A. S A ⊥ B C
B. A H ⊥ A C
C. A H ⊥ S C
D. A H ⊥ B C
Đáp án B
Ta có B C ⊥ S A B C ⊥ A B ⇒ B C ⊥ S A B ⇒ A H ⊥ B C
LẠI CÓ A H ⊥ S B ⇒ A H ⊥ S B C
Các ý A, C, D đúng
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với đáy.
a) Chứng minh tam giác SBC vuông
b) Gọi H là chân đường cao vẽ từ B của tam giác ABC.
Chứng minh (SAC) ⊥ (SBH)
c) Cho AB = a, BC = 2a. Tính khoảng cách từ B đến mặt phẳng (SAC)
a) BC ⊥ SA & BC ⊥ AB) ⇒ BC ⊥ (SAB)
⇒ BC ⊥ SB.
⇒ tam giác SBC vuông tại B.
b) BH ⊥ AC & BH ⊥ SA ⇒ BC ⊥ (SAC)
⇒ (SBH) ⊥ (SAC).
c) d[B, (SAC)] = BH. Ta có:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B , S A ⊥ A B C và AHlà đường cao của tam giác SAB Khẳng định nào sau đây sai
A. S B ⊥ B C
B. A H ⊥ B C
C. S B ⊥ A C
D. A H ⊥ S C
Đáp án C
Tam giác ABC vuông tại B ⇒ A B ⊥ B C
Mà S A ⊥ A B C ⇒ S A ⊥ B C ⇒ B C ⊥ S A B ⇒ B C ⊥ S B
Và A H ⊥ B C mà A H ⊥ S B ⇒ A H ⊥ S B C ⇒ A H ⊥ B C A H ⊥ S C
Vậy hai đường thẳng S B , A C chéo nhau.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = BC = 2a. Tam giác SAC cân tại S có đường cao S O = a 3 và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính khoảng cách giữa hai đường thẳng AB và SC theo a
A. a 3 3 .
B. 2 a 3 .
C. a 3 2 .
D. a