Tìm tất cả các điểm cực trị của hàm số y = 1/2.sin 2x + cos x – 2017
A.
B.
C.
D.
Cho hàm số y = x 4 2 - 2 m 2 x 2 + 2 . Tìm tập hợp tất cả các giá trị của tham số thực m sao cho đồ thị của hàm số đã cho có cực đại và cực tiểu, đồng thời đường thẳng cùng phương với trục hoành qua điểm cực đại tạo với đồ thị một hình phẳng có diện tích bằng 64 15 là
Cho hàm số bậc ba y=f(x) có đồ thị nhu hình vẽ bên. Tất cả các giá trị của tham số m để hàm số y=|f(x)+m| có ba điểm cực trị là:
A. m ≤ - 1 hoặc m ≥ 3
B. m ≤ - 3 hoặc m ≥ 1
C. m = -1 hoặc m = 3
D. 1 ≤ m ≤ 3
Gọi S là tập hợp tất cả các giá trị thực của tham số m để đồ thị hàm số có hai điểm cực trị A, B sao cho tam giác OAB có diện tích bằng 2. Hỏi S có bao nhiêu phần tử nguyên.
A. 1
B. 0
C. 2
D. 4
Tìm tất cả các giá trị của tham số m sao cho đường thẳng y= 2m-1 cắt đồ thị hàm số y = x 3 - 3 x + 1 tại 4 điểm phân biệt
A. 0 ≤ m ≤ 1
B. m ≥ 1
C. 0 < m < 1
D. m < 0
Đáp án C
Đồ thị hàm số y = x 3 - 3 x + 1 là đồ thị bên dưới
Từ đồ thị hàm số y = x 3 - 3 x + 1 suy ra đồ thị hàm số y = x 3 - 3 x + 1 là đồ thị bên dưới
Dựa vào đồ thị hàm số y = x 3 - 3 x + 1 và đồ thị hàm số y = 2 m - 1
Ta có: đường thẳng y = 2 m - 1 cắt đồ thị hàm số y = x 3 - 3 x + 1 tại 4 điểm phân biệt
⇔ - 1 < 2 m - 1 < 1 ⇔ 0 < m < 1
tìm các giá trị thực của tham số m để đồ thị hàm số Cm : y= -x3 + 3mx2 - 2m3 có 2 điểm cực trị A, B sao cho đường thằng AB vuông góc với đường thằng d : y= -2x
1)Đồ thị hs y=\(\dfrac{2x-1}{x^2-x-1}\)có bao nhiêu đường tiệm cận?
2)Số tiệm cận của hs y=\(\dfrac{x^2-3x-1}{x^2-3x-4}\)
3)Tìm tất cả các giá trị của m để hs y=\(\dfrac{x^2+mx+1}{x+m}\) đạt cực trị tại x=2.
4)Để hs y=\(\dfrac{x^2+mx+1}{x-12}\) có cực đại,cực tiểu thì các giá trị của m là:
a)m=0 b)m thuộc R c)m<0 d)m>0
Bài 9. Cho đa thức f(x) = 2x3 +ax2 +bx+6 với a,b là các số thực. Tìm tất cả các giá trị của a,b sao cho f(1)=2 và f(−1)=12.
Nếu f(1)=2 thì:
\(2+a+b+6=2\)
\(\Rightarrow a+b=-6\)
Nếu f(-1)=12 thì:
\(-2+a-b+6=12\)
\(\Rightarrow a-b=8\)
Giá trị a và b thoả mãn là rất lớn nên mình không lập bảng.
Tìm tất cả các giá trị của a để nghiệm của phương trình sau đạt GTNN,GTLN:
\(2x^4+2x^2+2ax+a^2+2a+1=0\)
Cho hàm số f(x) = x3-3x2+ 2 có đồ thị là đường cong trong hình bên. Tìm tất cả các giá trị thực của tham số m đề phương trình x 3 - 3 x 2 + 2 = m có nhiều nghiệm thực nhất
A. m> -2
B. m> 0
C. -2< m< 2.
D. m< 2.
+ Ta có hàm số g(x) = x 3 - 3 x 2 + 2 = m là hàm số chẵn nên đồ thị nhận trục Oy làm trục đối xứng.
+ Khi x≥ 0 ; g(x) = x3- 3x2+ 2
Do đó; đồ thị hàm số g(x) = x 3 - 3 x 2 + 2 có dạng như hình vẽ.
+ Dựa vào đồ thị suy ra phương trình x 3 - 3 x 2 + 2 = m có nhiều nghiệm thực nhất khi và chỉ khi -2< m< 2.
Chọn C.