cho tỉ lệ thức x+y/z=y+z/x=x+z/y
khi đó x+y =kz. vậy k=
Cho tỉ lệ thức: x + y/ z = y + z/ x = x + z/ y. Khi đó x+ y = kz. Vậy k = ........
Cho tỉ lệ thức (x+y)/z = (y+z)/x = (x+z)/y . Khi đó x+y=kz. Vậy k=
Cho mình cả cách làm luôn nha
Theo t/c dãy tỉ số = nhau:
\(\frac{x+y}{z}=\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y+y+z+x+z}{z+x+y}=\frac{2.\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow\frac{x+y}{z}=2\Rightarrow x+y=2z\)
Mà \(x+y=kz\Rightarrow k=2\)
Vậy k=2.
ko phải như thế này mới đúng: \(x+y=kz\Rightarrow\frac{kz}{z}=\frac{y+z}{x}=\frac{x+z}{z}=k\Rightarrow\frac{y+z-x-z}{x-y}=k\Rightarrow\frac{y-x}{x-y}=k\Rightarrow k=-1\)
x+yz=y+zx=z+xy=2(x+y+z)x+y+z
Nếu x + y + z = 0 thì x+y=−z
Nếu x+y+z≠0 thì x + y = 2z
P.s : Chú ý : Nếu trong một phân số (lớp lớn hơn gọi là phân thức) mà muốn rút gọn phân thức, ta chia cả mẫu và tử cho một nhân tử chung chứa các biến, chỉ rút gọn dc khi biến đó khác 0.
VD : 6(x+3)4(x+3)=32 chỉ khi x + 3 ≠0
Nếu x + 3 bằng 0 thì phân thức trên bằng 0 nhá!
Cho tỉ lệ thức\(\frac{x+y}{z}=\frac{y+z}{x}=\frac{x+z}{y}\)khi đó x+y=kz. Vậy k=?
\(\frac{x+y}{z}=\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y+y+z+x+z}{x+y+z}=\frac{2\cdot\left(x+y+z\right)}{x+y+z}=2\)
x+y=2z
=> kz=2z
=>k=2
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x+y}{z}=\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y+y+z+z+x}{z+x+y}=\frac{2\left(x+y+z\right)}{x+y+z}\) = 2
x+ y/z = 2
2z = x + y
Vậy z = 2
Cho tỉ lệ thức \(\frac{x+y}{z}=\frac{y+z}{x}=\frac{x+z}{y}\)khi đó x+y=kz. Vậy k=?
Vì ta có \(\frac{x+y}{z}=\frac{y+z}{x}=\frac{x+z}{y}\)và x+y = kz => x=y=z => x+y = 2z . Mà x+y = kz = 2z => kz = 2z => k = 2
Cho tỉ lệ thức \(\frac{x+y}{z}=\frac{y+z}{x}=\frac{x+z}{y}\) khi đó x+y = kz . Vậy k = ....
ai tick mik đến 10 mik tick cho cả đời
Cho tỉ lệ thức \(\frac{x+y}{z}=\frac{y+z}{x}=\frac{x+z}{y}\).
Khi đó x + y = kz
Vậy k =?
theo t/c dãy t/s=nhau:
\(\frac{x+y}{z}=\frac{y+z}{x}=\frac{x+z}{y}=\frac{\left(x+x\right)+\left(y+y\right)+\left(z+z\right)}{x+y+z}=\frac{2x+2y+2z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
=>x+y=2z=kz(theo đề)
=>k=2
vậy k=2
Cho tỉ lệ thức \(\frac{x+y}{z}=\frac{y+z}{x}=\frac{x+z}{y}\) khi đó x + y = kz . Vậy k =....?
Theo t/c dãy tỉ số = nhau:
\(\frac{x+y}{z}=\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y+y+z+x+z}{z+x+y}=\frac{2.\left(x+y+z\right)}{x+y+z}=2\)
=> \(\frac{x+y}{z}=2\Rightarrow x+y=2z=kz\Rightarrow k=2.\)
Vậy k=2.
1/ cho tỉ lệ thức (x+y)/z=(y+z)x=(x+z)/y và x+y=kz Vậy k =?
2/ với a>b>0 thì a/b.....(a+1)/(b+1) điền dấu ><=
áp dụng..:
\(\frac{x+y}{z}=\frac{y+z}{x}+\frac{x+z}{y}=\frac{x+y+y+z+z+x}{z+x+y}=\frac{2x+2y+2z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
=>(x+y)/z=2
mà x+y=kz=>k=2
Cho tỉ lệ thức khi đó
=> vậy k = ?