1+2-3+4-5+.........+88-89
a) (1×1+3×3+5×5+...+87×87+89×89) + (2×2+4×4+6×6+...+88×88+90×90)
b) 1×3+2×4+3×5+4×6+...+99×101+100×102
Ta có: \(A=1.3+2.4+3.5+4.6+...+99.101+100.102\)
\(A=1.\left(1+2\right)+2.\left(2+2\right)+3.\left(3+2\right)+4.\left(4+2\right)+....+99.\left(99+2\right)+100.\left(100+2\right)\)
\(A=\left(1^2+2^2+3^2+4^2+...+99^2+100^2\right)+\left(2+4+6+8+...+198+200\right)\)Đặt \(B=1^2+2^2+3^2+4^2+5^2+...+99^2+100^2\)
\(\Rightarrow B=\left(1^2+2^2+3^2+4^2+5^2+...+99^2+100^2\right)-2^2.\left(1^2+2^2+3^2+4^2+5^2+....+49^2+50^2\right)\)Tính dãy tổng quát \(C=1^2+2^2+3^2+4^2+5^2+...+n^2\)
\(C=1\left(0+1\right)+2\left(1+1\right)+3.\left(2+1\right)+4.\left(3+1\right)+5\left(4+1\right)+...+n\left[\left(n-1\right)+1\right]\)
\(C=\left[1.2+2.3+3.4+4.5+...+\left(n-1\right).n\right]+\left(1+2+3+4+5+....+n\right)\)
\(C=n.\left(n+1\right).\left[\left(n-1\right):3+1:2\right]=n.\left(n+1\right).\left(2n+1\right):6\)
Áp dụng vào B ta được:
\(B=100.101.201:6-4.50.51.101:6=166650\)
\(\Rightarrow A=166650+\left(200+2\right).100:2\)
\(\Rightarrow A=166650+10100=176750\)
Vậy A = 176750
Chúc bạn học tốt!!
S=1 x 2 x 3 + 2 x 3 x 4 + 3 x 4 x 5 +.... + 88 x 89 x 90
1/2*2/3*3/4*...*88/89
Đố ai giải được:1-2-3-4-5-6-7-88-89-99-95-45-...35654 5365.
Bài 1 tìm x biết
a) 5x +5x+2=650
b)23x+2=4x+5
c)x-11/89 + x-12/88 + x-33/67 = x-67/33 + x-88/12 +x-89/11
d)4x-x-1=2x+3
4+5+89+12+8+88=?
\(4+5+89+12+8+88=9+101+96=110+96=206\)
So sánh:
a) G=10^100+2/10^100-1 và H=10^8/10^8-3
b) E=98^99+1/98^89+1 và F=98^98/98^88+1
c) 5/3 và 5+m/3+m với m thuộc N*
CMR:\(\frac{87}{89}< \frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{2011\sqrt{2010}}< \frac{88}{45}\)
\(\frac{87}{89}< \frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{2011\sqrt{2010}}< \frac{88}{45}\)
Đặt \(A=\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{2011\sqrt{2010}}\)
\(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}=\frac{1}{\sqrt{k\left(k+1\right)}}>\frac{1}{\left(k+1\right)\sqrt{k}}>\frac{1}{\left(k+1\right)k}=\frac{1}{k}-\frac{1}{k+1}\)
\(\Rightarrow1-\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2010}}-\frac{1}{\sqrt{2011}}>A>1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2010}-\frac{1}{2011}\)
\(\Rightarrow1-\frac{1}{\sqrt{2011}}>A>1-\frac{1}{2011}\)
\(\Rightarrow\frac{88}{45}>\frac{2011-\sqrt{2011}}{2011}>A>\frac{2010}{2011}>\frac{87}{89}\)
\(\Rightarrow\frac{87}{89}< \frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{2011\sqrt{2010}}< \frac{88}{45}\)
chung minh rang C chia het cho 7,43
C=1+6+6^2+6^3+.....+6^88+6^89
Có 90 số hạng ,chia thành 45 nhóm,mỗi nhóm có 2 số hạng
B=(1+6)+(6^2+6^3)+...+(6^86+6^87)+(6^88+6^89)
B=7+(6^2x1+6^3x6)+...+(6^86x1+6^86x6)+(6^88x1+6^88x6)
B=7+6^2x(1+6)+..+6^86.7+6^88x7+
B=7+6^2x7+...+6^86x7+6^88x17
B=7x(6^2+..+6^86+6^88)
Vậy B:3
Có 90 số ,chia thành 30 nhóm mỗi nhóm có 3 số hạng
B=(1+6+6^2)+(6^3+6^4+6^5)+...+(6^88+6^89+6^90)
B=43x1+6^3x(1+6+36)+.....+6^88x(1+6+36)
Còn lại tự làm