Tính tổng S= 1.2+2.3+3.4+...+99.100
Tính tổng: S = 1.2 + 2.3 + 3.4 + 4.5 + ... + 99.100.
`S = 1.2 + 2.3 + 3.4 + 4.5 + ... + 99.100.`
`3S = 1.2.3 + 2.3.(4-1) + 3.4.(5-4) + 4.5.(6-3) + ... + 99.100.(101-98)`
`3S = 1.2.3 + 2.3.4-1.2.3 + 3.4.5-4.5.6 + 4.5.6-3.4.5 + ... + 99.100.101-98.99.100`
`3S = 99.100.101`
`S = 33.100.101`
`S = 333300`
3S=1.2(3-0)+2.3(4-1)+.....+99.100(101-98)
=1.2.3-0.1.2+2.3.4-1.2.3+4.5.6-2.3.4+....+99.100.101-98-99-100
=99.100.101
S=33.100.101
=333300
Tính tổng S = 1.2+2.3+3.4 +...+99.100
số số hạng là : ( 99.100 - 1.2 ) / 1.1 +1=90 ( số )
tổng của S là : ( 1.2 + 99.100 ) * 90 / 2=4513.5
trả lời giúp mình với mình đang rất cần nếu đúng mình sẽ tích cho
Tính tổng S= 1.2+2.3+3.4+...+99.100
S = 1.2 + 2.3 + 3.4 + ... + 99.100
3S = 1.2.(3-0) + 2.3.(4-1) + 3.4.(5-2) + ... + 99.100.(101-98)
3S = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100
3S = 99.100.101
S = 33.100.101
S = 333 300
Ủng hộ mk nha ^_-
Ta có: S = 1.2 + 2.3 + 3.4 + ... + 99.100
=> 3S = 1.2.(3-0) + 2.3.(4-1) + 3.4.(5-2) + ... + 99.100.(101-98)
=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ... - 99.100.101 + 98.99.100
=> 3S = 98.99.100
=> S = \(\frac{98.99.100}{3}=333300\)
Ta có: S = 1.2 + 2.3 + 3.4 + ... + 99.100
=> 3S = 1.2.(3-0) + 2.3.(4-1) + 3.4.(5-2) + ... + 99.100.(101-98)
=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ... - 99.100.101 + 98.99.100
=> 3S = 98.99.100
=> S = $\frac{98.99.100}{3}=333300$
Tính tổng: S=1.2+2.3+3.4+...+99.100
A . 3 = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3
A . 3 = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98)
A . 3 = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100
A . 3 = 99.100.101
A = 99.100.101 : 3
A = 33.100.101
A = 333 300
S = 1.2 + 2.3 + 3.4 + ..... + 99. 100
=> 3.S = 1.2.3+2.3.3+3.4.3+......+99.100.3
=> 3.S = 1.2.( 3 - 0) + 2 . 3 . ( 4 - 1 ) + 3. 4 . ( 5 - 2 ) + ..... + 99 . 100 . ( 101 - 98 )
=> 3 . S = ( 1.2 . 3 - 1 . 2 . 0 ) + ( 2 . 3 . 4 - 2 . 3 . 1 ) + ...... + ( 99. 100 . 101 - 98 . 99 . 100 )
=> 3.S = 99 . 100 . 101 - 1 . 2 .0
=> 3.S = 999 900 - 0
=> 3 . S = 999 900
=> S = 333 300
Vậy: S = 333 300
Gọi A là biểu thức ta có:
A = 1.2+2.3+3.4+......+99.100
Gấp A lên 3 lần ta có:
A . 3 = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3
A . 3 = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98)
A . 3 = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100
A . 3 = 99.100.101
A = 99.100.101 : 3
A = 33.100.101
A = 333 300
K mk nhé
Tính tổng S =1.2+2.3+3.4+...+99.100
S = 1.2 + 2.3 + 3.4 + ....+ 99.100
3S = 1.2.3 + 2.3.(4-1) +....+ 99.100.(101-98)
3S = 1.2.3 + 2.3.4 - 1.2.3 + ..... + 99.100.101-98.99.100
3S= 99.100.101 = 999900
S = 999900 : 3 = 333300
S = 1.2 + 2.3 + 3.4 +...+ 99.100
3S = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) +...+ 99.100.(101 - 98)
3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +...+ 99.100.101 - 98.99.100
3S = 99.100.101
3S = 999900
S = 333300
333300 đúng nhé
Tính tổng S= 1.2+2.3+3.4+...+99.100
Tính tổng S = 1.2 + 2.3 + 3.4 + ... + 99.100
Tính tổng S=1.2+2.3+3.4+.....+99.100
3S=1.2.3+2.3.3+...+99.100.3
3S=1.2(3-0)+2.3(4-1)+...+99.100(101-98)
3S=(1.2.3-0.1.2)+(2.3.4-1.2.3)+...+(99.100.101-98.99.100)
3S=99.100.101
3S=999900
S=333300
tính tổng S : S = 1.2 + 2.3 + 3.4 +.... + 99.100
S=99.100.101/3=333300
Ta có công thức:
1.2+2.3+3.4+...+n(n+1)=n(n+1)(n+2)/3