cho 10 mũ k -1 chia hết cho 19 (k<1)
chứng minh 10 mũ 2k -1 chia hết cho 19
cho 10 mũ k - 1 chia hết cho 19 chứng minh rằng
a)10 mũ 2k - 1 chia hết cho 19
b)10 mũ 3k - 1 chia hết cho 19
cho (10 mũ k) trừ 1 chia hết cho19.
C/m (10 mũ 2k) trừ 1 chia hết cho 19
10^k-1=(10^2k-10^k)-(10^k-1)=10^k(10^k-1)-(10^k-1) chia hết cho 19
vì 10^k-1 chia hết cho 19 nên 10^k(10^k-1) chia hết cho 19
vậy 10^2k-1 chia hết cho 19
câu sau làm như thế
Cho 10.k-1chia hết cho 19 với k>1. CMR
a) 10^2.k - 1 chia hết cho 19
b) 10^3.k - 1 chia hết cho19
cho:10^k-1 chia hết cho 19 với k>1 chứng minh rằng:10^2k-1 chia hết cho 19
Theo một tính chất cơ bản ta dễ có:
\(10^{2k}-1=\left(10^k\right)^2-1⋮10^k-1⋮19\)
Suy ra đpcm
Cho 10^k-1 chia hết cho 19 với k>1
Chứng tỏ 10^2k-1 chia hết cho 19
\(10^k-1⋮19\Rightarrow10^k\equiv1\left(mod19\right)\)
\(\Rightarrow\left(10^k\right)^2\equiv1^2\left(mod19\right)\)
\(\Rightarrow10^{2k}\equiv1\left(mod19\right)\)
\(\Rightarrow10^{2k}-1\equiv0\left(mod19\right)\)
Vậy ....
Cho 10k -1 chia hết cho 19 với k>1.Chứng minh rằng:
a)102k-1 chia hết cho 19
b)103k-1 chia hết cho 19
Cho : (10k - 1)chia hết cho 19 (k thuộc N , k>1 ). CM:(102k-1)chia hết cho 19
Cho 10k - 1 chia hết cho 19 ( x > 1 ). Hãy chứng tỏ rằng 102k - 1 chia hết cho 19.
Các bạn xem cách giải này có đúng không rồi để lại nhận xét nhé (nếu sai thì làm lại giúp mình) :
102k - 1 = (10k)2 - 1 = 10k + 1 x 10k - 1.
Vì đề bài cho 10k - 1 chia hết cho 19 => Biểu thức trên chia hết cho 19 <=> 102k - 1 chia hết cho 19.
Vậy 102k - 1 chia hết cho 19.
Cho 10^k-1 chia hết cho 19(k>1). Chứng minh
a,10^2k-1 chia hết cho19
b,10^3k-1 chia hết cho 19