Chứng minh rằng nếu : ad = \(b^2\) thì \(\frac{a^2+b^2}{b^2+d^2}=\frac{a}{d}\)
Chứng minh rằng : Nếu \(\frac{a}{b}=\frac{b}{d}\)thì \(\frac{a^2+b^2}{b^2+d^2}=\frac{a}{d}\)
ta có :a/b=b/d =a+b/b+d => a/d=b/b=a+b/b+d
<=>a+b/b+d=a2+b2/b2+d2=a/d
\(\frac{a}{b}\)=\(\frac{b}{d}\)=> \(\frac{ab}{bd}\)= \(\frac{a^2}{b^2}\)=\(\frac{b^2}{d^2}\)=> \(\frac{a}{d}\)=\(\frac{a^2+b^2}{b^2+d^2}\)=> dpcm
Ta có : \(\frac{a}{b}=\frac{b}{d}\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{d^2}\)
Áp dụng TC của dãy tỉ số bằng nhau , ta có :
\(\frac{a^2}{b^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{b^2+d^2}=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{d}=\frac{a}{d}\)
Chứng minh rằng : Nếu \(\frac{a}{b}=\frac{b}{d}\)thì \(\frac{a^2+b^2}{b^2+d^2}=\frac{a}{d}\)
Ta có : \(\frac{a}{b}=\frac{b}{d}\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{b^2+d^2}\)
Mặt khác \(\frac{a}{b}=\frac{b}{d}\) => ad = b2
Thay ad = b2 ta có : \(\frac{a^2+ad}{ad+d^2}=\frac{a\left(a+d\right)}{d\left(a+d\right)}=\frac{a}{d}\) (đpcm)
\(\frac{a}{b}=\frac{b}{d}\Rightarrow\frac{a}{b}.\frac{a}{b}=\frac{b}{d}.\frac{b}{d}=\frac{a}{b}.\frac{b}{d}\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{d^2}=\frac{a}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau: \(\frac{a^2}{b^2}=\frac{b^2}{d^2}=\frac{a}{d}=\frac{a^2+b^2}{b^2+d^2}\)
Vậy ta có đpcm
chứng minh rằng nếu \(\frac{a}{b}=\frac{c}{d}\) thì \(\frac{a^2+b^2}{b^2+d^2}=\frac{a}{d}\)
60. Chứng minh rằng nếu \(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
đặt \(\frac{a}{b}=\frac{c}{d}=k\)=> a=bk c=dk
ta có : \(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)(1)
\(\frac{ab}{cd}=\frac{b.k.b}{d.k.d}=\frac{b^2}{d^2}\)(2)
từ (1:2) => \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
Cái này dựa trên mạng dác dặt bút làm lắm nha
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=b.k;c=d.k\)
Ta có \(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{kb^2}{kd^2}=\frac{b^2}{d^2}\left(1\right)\)
Ta lại có \(\frac{a^2+b^2}{c^2+d^2}=\frac{k^2.b^2+b^2}{k^2.d^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\left(2\right)\)
Từ \(\left(1\right)và\left(2\right)\)ta được
\(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)
\(\frac{a}{b}=\frac{c}{d}=>\frac{a^2}{b^2}=\frac{c^2}{d^2}\)\(=>\frac{a^2}{c^2}=\frac{b^2}{d^2}.\) . .Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\).Xin lỗi mình chưa nghĩ ra tiếp
Chứng minh rằng : Nếu \(\frac{a}{b}=\frac{b}{d}\)thì \(\frac{a^2+b^2}{b^2+d^2}=\frac{a}{d}\)
\(\dfrac{a}{b}=\dfrac{b}{d}\Rightarrow\dfrac{a^2}{b^2}=\dfrac{b^2}{d^2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a^2}{b^2}=\dfrac{b^2}{d^2}=\dfrac{a^2+b^2}{b^2+d^2}\) (1)
Lại có: \(\dfrac{a^2}{b^2}=\dfrac{a}{b}\cdot\dfrac{a}{b}=\dfrac{a}{b}\cdot\dfrac{b}{d}=\dfrac{a}{d}\) (2)
Từ (1) và (2) suy ra \(\dfrac{a^2+b^2}{b^2+d^2}=\dfrac{a}{d}\) (đpcm)
cho 2 số hữu tỉ \(\frac{a}{b}\)và\(\frac{c}{d}\)( b>0, d>0 ). chứng minh rằng
a) nếu \(\frac{a}{b}\)<\(\frac{c}{d}\)thì ad < bc
b) nếu ad > bc thì \(\frac{a}{b}\)> \(\frac{c}{d}\)
Đặt \(\hept{\begin{cases}\frac{a}{b}=k\Rightarrow a=bk\\\frac{c}{d}=q\Rightarrow c=dq\end{cases}}\)
a) Thay a và c vào biểu thức ta có :
\(\frac{bk}{b}< \frac{dq}{d}\Rightarrow k< q\)
=> ad ... bc
=> bkd ... bdq
=> k ... q
=> k < q
=> đpcm
b) tương tự thay a và c vào
Cho 2 số hữu tỉ:
Chứng minh rằng:
a, Nếu \(\frac{a}{b}>1\) thì\(a>b\)
b,Nếu \(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{a+c}{b+d}\)
c,Nếu \(a< b\)thì \(\frac{a}{b}< 1\)
d,Nếu \(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{a^2}{b^2}=\frac{c^2}{d^2}\)\(=\frac{a^2+c^2}{b^2+d^2}\)
a) Nhân cả hai vế với b, ta có đpcm
b) Đề sai
c) Nhân cả hai vế với b, ta có đpcm
d) Bạn trên đã làm r , mình k trình bày lại nữa
d,
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\) \(a=k\times b\) ; \(c=k\times d\)
Ta có :
\(\frac{a^2}{b^2}=\frac{\left(k\times b\right)^2}{b^2}=\frac{k^2\times b^2}{b^2}=k^2\) (1)
\(\frac{c^2}{d^2}=\frac{\left(k\times d\right)^2}{d^2}=\frac{k^2\times d^2}{d^2}=k^2\) (2)
\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(k\times b\right)^2+\left(k\times d\right)^2}{b^2+d^2}=\frac{k^2\times b^2+k^2\times d^2}{b^2+d^2}=\frac{k^2\times\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (3)
Từ (1) ; (2) và (3) => \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)
b nhé :
a/b = c/d = k
=> a= bk
c= dk
Ta có: \(\frac{a+c}{b+d}=\frac{kb+kd}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\)mà k= a/b=c/d đấy ạ
d, Đây nhá: a/b= c/d = a2/ba= c2/dc = a2/c2=ba/dc
a/b= c/d = b/a=d/c= b2/ba= d2/dc= b2/ d2= ba/bc
từ trên => a2/c2=b2/d2 = a2/b2= c2/d2 ta gọi a2 là x: b2 là y; c2là z còn d2 là t
Ta có: x/y= z/t= k
=> x= ky; z= kt
\(\frac{x+z}{y+t}=\frac{yk+tk}{y+t}=\frac{k\left(y+t\right)}{y+t}=k\)
vậy :............
2 ý trên dễ bn tự làm nhé
Đúng ko nhỉ
Bài 1,\(\frac{a+5}{a-5}=\frac{b+6}{b-6}\). Chứng minh rằng: \(\frac{a}{b}=\frac{5}{6}\)
Bài 3, Bốn số a, b,c,d thỏa mãn điều kiện:\(b^2=ac;c^2=bd.\)Chứng minh:\(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Bài 2, Chứng minh rằng nếu: \(\frac{a}{b}=\frac{c}{d}\) thì \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
đề nào và mình ghi sai thứ tự bài
bài 1 thiếu cho ở đàu
cho 2 số hữu tỉ \(\frac{a}{b}\)và \(\frac{c}{d}\)(b>0,d>0) . chứng tỏ rằng:
a) Nếu \(\frac{a}{b}< \frac{c}{d}\)thì ad< bc ;
b) Nếu ad<bc thì \(\frac{a}{b}< \frac{c}{d}\)
\(a,\frac{a}{b}< \frac{c}{d}=>\frac{ad}{bd}< \frac{bc}{bd}=>ad< bc\left(đpcm\right)\)
\(b,ad< bc=>\frac{ad}{bd}< \frac{bc}{bd}=>\frac{a}{b}< \frac{c}{d}\left(đpcm\right)\)
Chào các bạn, hôm nay mình có một bài toán khá khó muốn nhờ các bạn giải giúp
a) Chứng minh rằng nếu\(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
b) Cho \(\frac{a}{b}=\frac{c}{d}\). Hãy chứng minh: \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)
a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}\)(1)
\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)(2)
Từ (1) và (2), ta có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
b) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
\(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\frac{\left[b.\left(k-1\right)\right]^2}{\left[d.\left(k-1\right)\right]^2}=\frac{b^2}{d^2}\)(1)
\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)(2)
Từ (1) và (2), ta có: \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)
a) Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)
mà \(\left(\frac{a}{c}\right)^2=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\)
\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
b) Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{a-b}{c-d}\right)^2=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
mà \(\left(\frac{a}{c}\right)^2=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\)
\(\Rightarrow\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)