\(ad=b^2\)\(\Rightarrow\) \(\frac{a^2+b^2}{b^2+d^2}=\frac{a^2+ad}{ad+d^2}\) \(=\frac{a\left(a+d\right)}{d\left(a+d\right)}=\frac{a}{d}\left(đpcm\right)\)
\(ad=b^2\)\(\Rightarrow\) \(\frac{a^2+b^2}{b^2+d^2}=\frac{a^2+ad}{ad+d^2}\) \(=\frac{a\left(a+d\right)}{d\left(a+d\right)}=\frac{a}{d}\left(đpcm\right)\)
1.Tìm ba số x, y, z, biết rằng
\(\frac{x}{2}=\frac{y}{3},\frac{y}{4}=\frac{z}{5}\)và x+y-z=10
2.Tìm hai số x , y biết rằng
\(\frac{x}{2}=\frac{y}{5}\) và xy = 10
3.Chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) (a-b \(\ne\) 0, c-d \(\ne\)0) ta có thể suy ra tỉ lệ thức \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
bài 1
tìm x trong các tỉ lệ thức sau :
a, \(\frac{x-3}{x+5}=\frac{5}{7}\) b,\(\frac{7}{x-1}=\frac{x+1}{9}\)
c,\(\frac{x+4}{20}=\frac{5}{x+4}\) d,\(\frac{x-1}{x+2}=\frac{x-2}{x+3}\)
bài 2
cho \(\frac{a+5}{a-5}=\frac{b+6}{b-6}\)(a khác 5, b khác 6 . chứng minh \(\frac{a}{b}=\frac{5}{6}\)
bài 3
chứng minh rằng nếu \(\frac{a}{b}=\frac{c}{d}\) thì \(\frac{a^{2^{ }}+b^2}{c^2+d^2}=\frac{ab}{cd}\)
bài 4
cho P=\(\frac{x+2y-3z}{x-2y+3z}\). Tính giá trị của P biết các số x,y,z có tỷ lệ với các số 5;4;3
bài 5
cho các số A,B,C tỉ lệ với các số a,b,c, chứng minh rằng giá trị của biểu thức
Q=\(\frac{Ax+By+C}{ax+by+c}\) ko phụ thuộc vào x và y
giúp mik vs mn
mik sắp đi hok
Chứng minh rằng nếu a/b = c/d thì a2 + b2/c2 + d2 = ab/cd.
Cho a, b, c, d thuộc N và:
b = a + c/2 và 1/c = 1/2(1/b + 1/d).
Chứng minh rằng ad = bc
chứng minh rằng nếu \(\dfrac{a}{b}=\dfrac{c}{d}\)thì\(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)
thì\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
1)Cho a/a+b=c/c+d
Chứng minh rằng: a/b= c/d
2)cho a/b=c/d, chứng minh rằng
a)3a+2c/3b+2d=-5a+3c/-5b+3d
b)a^2/b^2=2c^2-ac/2d^2-b-d
NHANH NHA! MÌNH ĐANG CẦN GẤP!!!
Bài 1: Tìm các số tự nhiên a, b, c nhỏ nhất sao cho \(\frac{a}{b}\)= \(\frac{3}{5}\), \(\frac{b}{c}\)= \(\frac{12}{21}\), \(\frac{c}{a}\)= \(\frac{6}{11}\)
Bài 2: Cho a, b, c, d khác 0 thỏa mãn b2 = ac, c2 = bd. Chứng minh: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) = \(\frac{a}{d}\)
Bài 3: Cho a, b, c khác 0 thỏa mãn \(\frac{ab}{a+b}\) = \(\frac{bc}{b+c}\) = \(\frac{ca}{c+a}\). Tính giá trị biểu thức M = \(\frac{ab+bc+ca}{a^2+b^2+c^2}\)
1. Cho tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\). CMR: \(\frac{2a^2-3ab+4b^2}{5b^2+6ab}=\frac{2c^2-3cd+4d^2}{5d^2+6cd}\)
2. Cho \(\frac{a}{b}=\frac{c}{d}\). CMR:
a. \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)
b. \(\frac{c^2-a^2}{a^2+b^2}=\frac{c-a}{a}\)
cho a/b=c/d chứng minh rằng a.b/c.d=(a+b)^2/(c+d)^2 . ( giúp mình với nha )
Câu 1:Cho\(\frac{a}{b}\)=\(\frac{c}{d}\).Cm \(\frac{a^2-c^2}{b^2-d^2}\)=\(\frac{a^2+c^2}{b^2+d^2}\)