Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
NGUYỄN NHẬT QUANG
Xem chi tiết
Nguyễn Đỗ Minh Phương
Xem chi tiết
Võ Đông Anh Tuấn
6 tháng 4 2016 lúc 16:53

Do qq là số nguyên tố lớn hơn 33, nên q⋮̸3q⋮̸3, vậy qq có dạng
q=3k±1q=3k±1
+ Nếu q=3k+1⇒p=3k+3q=3k+1⇒p=3k+3 và do đó p ⋮ 3p ⋮ 3. Mặt khác pp là số nguyên tố lớn hơn 33, mâu thuẫn.

Vậy q=3k−1⇒p=3k+1q=3k−1⇒p=3k+1. Từ đó:
p+q=6k⇒p+q⋮3p+q=6k⇒p+q⋮3
Xét 22 số p+1p+1 và p−1p−1, ta thấy đây là 22 số chẵn liên tiếp (vì p,qp,q là các số nguyên tố lớn hơn 33 và (p+1)−(q+1)=2(p+1)−(q+1)=2). Do vậy trong hai số p+1p+1 và q+1q+1 có một số chia hết cho 44. Không mất tính tổng quát, giả sử (q+1) ⋮ 4(q+1) ⋮ 4, khi đó q+1=4m→p=4m−1q+1=4m→p=4m−1 và do đó p=4m+1p=4m+1. Từ đó:
p+q=4m⇒(p+q)⋮4p+q=4m⇒(p+q)⋮4

Do (3,4)=1(3,4)=1, nên ta có đpcm. 

Nguyễn Thiện Minh
Xem chi tiết
piku nankih
Xem chi tiết
Nguyen Minh Thanh
Xem chi tiết
Ngọc Hưng
4 tháng 11 2023 lúc 19:31

Vì q là số nguyên tố lớn hơn 3 nên q có dạng 3k+1 hoặc 3k+2. (\(k\in N\)*)

Nếu q=3k+1 thì p=q+2=3k+3. Khi đó p chia hết cho 3 nên không phải số nguyên tố (loại)

Nếu q=3k+2 thì p=q+2=3k+4. Khi đó p+q=6k+6=6(k+1)

Vì q=3k+2 là số nguyên tố nên k là số lẻ (nếu k chẵn thì q chia hết cho 2). Khi đó k có dạng 2m+1 (\(m\in N\)*)

Suy ra p+q=6(2m+1+1)=12(m+1) chia hết cho 12 (đpcm)

 

Nguyễn Hương Giang
Xem chi tiết
NGUYỄN KHÔI NGUYÊN
Xem chi tiết

 Để olm giúp em, em nhé! 

Vì q là số nguyên tố lớn hơn 3 nên q có dạng:

         q = 3n + 1 (n là số tự nhiên chẵn vì nếu n lẻ thì q là hợp số loại)

hoặc q = 3n + 2 (n là số tự nhiên lẻ vì nếu n chẵn thì q là hợp số loại)

Xét q = 3n + 1 ta có: p = 3n + 1 + 2 = 3n + 3 ⋮ 3 (loại)

Vậy q có dạng: q = 3n + 2 ⇒ p = 3n + 2 + 2 = 3n + 4

Theo bài ra ta có:

p + q = 3n + 2 + 3n + 4

p + q= 6n + 6 (n là số tự nhiên lẻ)

p + q = 6.(n+1)

Vì n là số lẻ nên n + 1⋮ 2; 6 ⋮ 6 ⇒ p + q ⋮ 12 (đpcm)

 

Đỗ Việt Hoàng
Xem chi tiết
Đoàn Đức Hà
7 tháng 6 2021 lúc 8:56

Vì là số nguyên tố lớn hơn \(3\)và \(p-q=2\)nên \(p=3k+1,q=3k-1\)\(k>1\).

suy ra \(p+q=6k\).

\(k\)phải là số chẵn do số nguyên tố lớn hơn \(3\)là số lẻ, do đó \(p+q\)chia hết cho \(12\).

Khách vãng lai đã xóa
Trần Thị Thúy Thanh
Xem chi tiết