=>1 thừa số :12 dư 11 và 1thua so :12 dư 1
=>p+q chia het 12
Vì q nguyên tố, q > 3 nên q có dạng 6k + 1 hoặc 6k + 5 \(\left(k\inℕ\right)\)
+)Nếu \(q=6k+1\)thì \(p=q+2=6k+1+2=6k+3=3\left(2k+1\right)⋮3\)
Mà p > 3 nên p là hợp số (loại)
+)Nếu \(q=6k+5\)thì \(p=q+2=6k+5+2=6k+7\)
suy ra \(p+q=\left(6k+5\right)+\left(6k+7\right)=12k+12=12\left(k+1\right)⋮12\)
Vậy \(p+q⋮12\left(đpcm\right)\)