Tìm 11 số tự nhiên liên tiếp có tổng các bình phương của chúng là một số chính phương nhỏ hơn 10000
1) Tìm tất cả các số nguyên tố để p^4+8^p cũng là số nguyên tố
2)Có tồn tại 2019 số tự nhiên liên tiếp nào mà tổng các bình phương của 2019 số tự nhiên liên tiếp đó là số chính phương không ?
Cho 3 số tự nhiên liên tiếp có tổng các bình phương của 2 số bằng bình phương số cuối số tự nhiên nhỏ nhất là
Viết các biểu thức đại số thỏa mãn một trong các điều kiện sau:
a) Số nhỏ hơn 3 lần một số a cho trước 2 đơn vị.
b) Tích của tổng hai số với hiệu giữa tổng bình phương của hai số với tích của chúng.
c) Bình phương của một số tự nhiên gọi là một số chính phương. Nếu a là một số chính phương thì số chính phương liền ngay sau số a là số nào ?
d) Diện tích của một hình tròn có chu vi là p được viết như thế nào ?
tổng các bình phương của 2020 số tự nhiên liên tiếp có phải là só chính phương không ?
Cho 3 số tự nhiên liên tiếp có tổng các bình phương của 2 số đầu bằng bình phương số cuối . Số tự nhiên nhỏ nhất là ...........
Gọi 3 số tự nhiên liên tiếp lần lượt là a,a+1,a+2 (a \(\in\) N)
Có: a2+(a+1)2=(a+2)2
=>a2+a2+2a+1=a2+4a+4
=>a2+2a+1=4a+4
=>a2+1=2a+4
=>a2+1-2a-4=0
=>a2-2a-3=0
=>a2-3a+a-3=0
=>a(a-3)+(a-3)=0
=>(a+1)(a-3)=0
=>a=-1 hoặc a=3
Mà a \(\in\) N
=>a=3
Vậy STN nhỏ nhất là 3
Gọi 3 số đó là a ; a + 1 và a + 2
Có :
\(a^2+\left(a+1\right)^2=\left(a+2\right)^2\)
\(2a^2+2a+1=a^2+4+4a\)
\(\Rightarrow a^2=3+2a\)
\(a^2-2a-3=0\)
\(\left(a^2-3a\right)+\left(a-3\right)=0\)
\(\left(a-3\right)\left(a+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a=3\\a=-1\end{cases}}\)
Mà a là số tự nhiên nên a = 3
Vậy ...
Gọi 3 số tnlt lần lượt là k,k+1,k+2
Theo bài ra ta có:
a2+(a+1)2=(a+2)2
=>2a2+2a+1=a2+4+4a=>a2=3+2a=>a2-3-2a=0
=>a2-3a+a-3=0=>(a2-3a)+(a-3)=0
=>(a-3)(a+1)=0
=>a-3=0 hoặc a+1=0
=>a=3 hoặc a=-1
Mà a là STN =>a=3
Vậy số cần tìm là 3
Bài 4 :
a) Tìm hai số tự nhiên chẵn liên tiếp biết hiệu các bình phương của 2 số ấy là 68
b) Tìm hai số tự nhiên lẻ liên tiếp biết tổng các bình phương của 2 số ấy là 2594
c) Tìm tất cả số tự nhiên n thỏa mãn \(n^2+6n+12\) là số chính phương
gọi 2 số đó là a; a + 2 (a thuộc N; a chẵn)
có a^2 - (a + 2)^2 = 68
=> a^2 - a^2 - 4a - 4 = 68
=> -4a - 4 = 68
=> -4a = 72
=> a = 18
=> a + 2 = 20
CMR :
1 . tổng bình phương của 3 số tự nhiên liên tiếp ko là số chính phương
2 . ko tồn tại 2 số chính phương mà hiệu của chúng là 2010 ; 1682 ; 2018 ...
1, Gọi 3 số chính phương của 3 số tự nhiên liên tiếp lần lượt là : (a-1)^2 ; a^2 ; (a+1)^2
Xét : (a-1)^2+a^2+(a+1)^2 = a^2-2a+1+a^2+a^2+2a+1 = 3a^2+2 chia 3 dư 2
=> (a-1)^2+a^2+(a+1)^2 ko phải là số chính phương
Tk mk nha
cmr : tổng bình phương của 5 số tự nhiên liên tiếp không thể là một số chính phương
đơn giản thế này thôi:
Tổng bình phương của 5 STN liên tiếp chia 5 dư 4 không là SCP.
Chứng minh rằng tổng các bình phương của 5 số tự nhiên liên tiếp không thể là 1 số chính phương.
Lời giải:Gọi tổng bình phương của 5 số tự nhiên liên tiếp là:
$T=a^2+(a+1)^2+(a+2)^2+(a+3)^2+(a+4)^2$
$T=5a^2+20a+30=5(a^2+4a+6)=5[(a+2)^2+2]$
Vì $(a+2)^2$ là scp nên chia 5 dư $0,1,4$. Do đó $(a+2)^2+2$ chia $5$ dư $1,2,3$
$\Rightarrow T$ chia hết cho $5$ nhưng không chia hết cho $25$ nên $T$ không phải là scp.
Ta có đpcm.