tính tổng A= 1 + 3 + 32 + 33 + ......+ 329 + 330
1. Tìm x biết :
3/4 = x/24
2.Tính tổng biết :
4 + 5 + 6 +.....+ 329 + 330.
1.Quy đồng mẫu số 2 phân số :
3/4 = x/24 bằng :
12/24 = x/24
Vậy x = 12.
2 .
Dãy trên có số số hạng là :
( 330 - 4 ) : 1 + 1 = 327
Dãy số trên có tổng là :
( 330 + 4 ) x 327 : 2 = 54609
Đáp số : 54609
Bài 1 : Tìm x biết :
3/4 = x/24
<=> 4 . x = 3 . 24
<=> 4 . x = 72
<=> x = 72 : 4
<=> x = 18
Vậy x = 18
Bài 2 : Tính tổng biết :
4 + 5 + 6 + ... + 329 + 330
Số số hạng của dãy trên là :
( 330 - 4 ) : 1 + 1 = 327 ( số hạng )
Tổng của dãy trên là :
( 330 + 4 ) × 327 : 2 = 54 609
=> 4 + 5 + 5 + ... + 329 + 330 = 54 609
1.
\(\frac{3}{4}=\frac{x}{24}\)
\(\Leftrightarrow4x=3\times24\)
\(\Leftrightarrow4x=72\)
\(\Leftrightarrow x=72:4\)
\(\Leftrightarrow x=18\)
Vậy \(x=18\)
2.
\(4+5+6+...+329+330\)
Số số hạng của dãy là:
( 330 - 4 ) :1 +1 = 327 ( số )
Tổng của dãy là:
( 330+ 4 ) x 327 : 2 = 54609
ĐS: 54609
Chữ số hàng đơn vị của kết quả phép tính: 3 + 32 + 33 + ...... + 330
A = 3 + 32 + 33 + ... + 330
3.A = 32 + 33 + 34 + ... + 331
3A - A = 32 + 33 + 34 +... + 331 - (3 + 32 + 33 + ... + 330)
2A = 32 + 33 + 34 + .... + 331 - 3 - 32 - 33 -...- 330
2A = 331 - 3
331 = (34)7.33 - 3 = \(\overline{...1}\)7.27 - 3 = \(\overline{...7}\) - 3 = \(\overline{...4}\)
2.A = \(\overline{...4}\) ⇒ A = \(\overline{..2}\); \(\overline{...7}\) (1)
A = 3 + 32 + ... + 330
A = 31 + 32 + ... + 330
Xét dãy số: 1; 2;...; 30 dãy số này có số số hạng là 30
Vậy A có 30 hạng tử. Vì mỗi hạng tử của A là một số lẻ nên A là tổng của 30 số lẻ vậy A là số chẵn (2)
Kết hợp (1) và (2) ta có: A = \(\overline{..2}\)
Kết luận chữ số hàng đơn vị của A = 3 + 32 +...+ 330 là 2
Cho A = 1 + 3 + 3 2 + 3 3 + . . . . + 3 30 . Tìm chữ số tận cùng của A, từ đó suy ra A không phải số chính phương
Cho A = 1 + 3 + 3 2 + 3 3 + . . . + 3 30 . Tìm chữ số tận cùng của A, từ đó suy ra A không phải số chính phương
A = 1 + 3 + 3 2 + 3 3 + . . . + 3 30
3 A = 3 + 3 2 + 3 3 + . . . + 3 30 + 3 31
2A = 3A – A = ( 3 + 3 2 + 3 3 + . . . + 3 30 + 3 31 ) – ( 1 + 3 + 3 2 + 3 3 + . . . + 3 30 )
2A = 3 31 - 1
A = 3 31 - 1 2
Ta có 3 1 = 3 ; 3 3 = 9 ; 3 3 = 27 ; 3 4 = 81 ; 3 5 = 243
với n ≥ 0 thì 3 4 n + 3 có chữ số tận cùng là 7.Vì 31 = 4.7 + 3 nên 3 31 có chữ số tận cùng là 7. Do đó 3 31 - 1 2 có chữ số tận cùng là 3. Mà không có số nào bình phương lên có chữ số tận cùng là 3 nên A không là số chính phương.
Tìm chữ số tận cùng của A, từ đó suy ra A không phải số chính phương
tính tổng sau : A = 1+3+32+33+...+3100
\(A=1+3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3A=3+3^2+3^3+...+3^{101}\)
Trừ theo vế:
\(\Rightarrow3A-A=\left(3+3^2+3^3+...3^{101}\right)-\left(1+3+3^2+...+3^{100}\right)\)
\(2A=3^{101}-1\Rightarrow A=\dfrac{3^{101}-1}{2}\)
tính tổng sau :A =1+3+32 +33 +...+ 3100
A =1+3+32 +33 +...+ 3100
3A=3.(30+3+32 +33 +...+ 3100)
3A=31+32 +33 +...+ 3101
3A-A=(31+32 +33 +...+ 3101)-(30+3+32 +33 +...+ 3100)
2A=3101-30
A=(3101-1) :2
vậy A=(3101-1) :2
t.i.c cho mình nha
Bài 1. Cho 𝐴 = 3 + 32 + 33 + ⋯ + 330.
- Chứng minh rằng: 𝐴 ⋮ 13 và 𝐴 ⋮ 52.
- Hỏi A có phải là số chính phương không? Tại sao?
Bài 1: tính tổng dãy số sau:
A = 1+3+32+33+...+399+3100
Các bạn xem bài giải của mình nếu đúng tick cho mình nhé!
Giải
Ta có: 3A = 3.(1+3+32+33+...+399+3100)(1+3+32+33+...+399+3100)
3A = 3+32+33+...+3100+31013+32+33+...+3100+3101
Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)(3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)
2A = 3101−13101−1
⇒⇒ A = 3101−123101−12
Vậy A = 3101−12
xin lỗi bài trên của mình làm sai
Ta có: 3A = 3.(1+3+32+33+...+399+3100)
3A = 3+32+33+...+3100+3101
Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)
2A = 3101−1
⇒ A = 3101−1
2
Vậy A = 3101−1
2
Tính tổng: B = 3 0 + 3 1 + 3 2 + ... + 3 30
S = 1 + 3 + 32 + 33 +... + 32014 .Tính tổng
S = 1 + 3 + 32 + 33 +... + 32014
3S = 3 + 32 + 33 + 34 + ... + 32015
3S - S = ( 3 + 32 + 33 + 34 + ... + 32015) - (1 + 3 + 32 + 33 +... + 32014)
2S = 32015 - 1
S = \(\dfrac{3^{2015}-1}{2}\)