Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Lâm Thiên Hương
Xem chi tiết
Lê Thành Đạt
Xem chi tiết
Nguyễn Thị Lê Mi
Xem chi tiết
kudo shinichi
20 tháng 7 2018 lúc 21:17

\(\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}\)

\(=1+\frac{1}{2013}+1+\frac{1}{2012}+1+\frac{1}{2011}+1-\frac{3}{2014}\)

\(=4+\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2014}-\frac{1}{2014}-\frac{1}{2014}\right)\)

Ta có:

 \(\frac{1}{2011}>\frac{1}{2014}\Rightarrow\frac{1}{2011}-\frac{1}{2014}>0\)

\(\frac{1}{2012}>\frac{1}{2014}\Rightarrow\frac{1}{2012}-\frac{1}{2014}>0\)

\(\frac{1}{2013}>\frac{1}{2014}\Rightarrow\frac{1}{2013}-\frac{1}{2014}>0\)

\(\Rightarrow\frac{1}{2011}-\frac{1}{2014}+\frac{1}{2012}-\frac{1}{2014}+\frac{1}{2013}-\frac{1}{2014}>0\)

\(\Rightarrow4+\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2014}-\frac{1}{2014}-\frac{1}{2014}\right)>4\)( thêm 2 vế với 4 )

\(\Rightarrow\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}>4\)

Vậy \(\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}>4\) 

Tham khảo nhé~

Hoang Quoc Khanh
20 tháng 7 2018 lúc 21:18

Mỗi số hạng của tổng đều nhỏ hơn 1 => Tổng đó nhỏ hơn 4

Đen đủi mất cái nik
20 tháng 7 2018 lúc 21:33

Ta có:

\(\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}=4+\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{3}{2014}\)

\(\frac{1}{2013}>\frac{1}{2014},\frac{1}{2012}>\frac{1}{2014},\frac{1}{2011}>\frac{1}{2014}\)

=>\(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}>\frac{3}{2014}\)

=>\(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{3}{2014}>0\)

=>\(4+\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{3}{2014}>4\)

TítTồ
Xem chi tiết
Nguyệt Nguyệt
Xem chi tiết
Nguyễn Huy Tú
8 tháng 1 2017 lúc 17:24

Sửa lại:

Ta có:

\(2011A=\frac{2011^{2013}+2011}{2011^{2013}+1}=1+\frac{2010}{2011^{2013}+1}\)

\(2011B=\frac{2011^{2014}+2011}{2011^{2014}+1}=1+\frac{2010}{2011^{2014}+1}\)

\(1+\frac{2010}{2011^{2013}+1}>1+\frac{2010}{2011^{2014}+1}\) nên 2011A > 2011 B

Từ đó A > B

Vậy A > B

Nguyễn Huy Tú
8 tháng 1 2017 lúc 15:29

Có:

\(2009A=\frac{2011^{2013}+2011}{2011^{2013}+1}=1+\frac{2010}{2011^{2013}+1}\)

\(2011B=\frac{2011^{2014}+2011}{2011^{2014}+1}=1+\frac{2010}{2011^{2014}+1}\)

\(1+\frac{2010}{2011^{2013}+1}>1+\frac{2010}{2011^{2014}+1}\)

\(\Rightarrow2009A>2009B\)

\(\Rightarrow A>B\)

Vậy A > B

Lê Thành Đạt
Xem chi tiết
Huy Trần Lê Quốc
30 tháng 11 2014 lúc 20:48

$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$

$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$

$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$

$\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$

$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}$

Đặng Hà Trang
28 tháng 2 2015 lúc 20:25

dễ ợt nhưng éo biết làm thông cảm nha

 

Pham Quynh Trang
15 tháng 5 2015 lúc 21:23

ban Dang Ha Trang an noi gi ki vay 

 

Nhân cute
Xem chi tiết
Phùng Minh Quân
21 tháng 3 2018 lúc 20:44

Ta có : 

\(\frac{1}{2013}M=\frac{2013^{2012}+2012}{2013^{2012}+2013}=\frac{2013^{2012}+2013}{2013^{2012}+2013}-\frac{1}{2013^{2012}+2013}=1-\frac{1}{2013^{2012}+2013}\)

Lại có : 

\(\frac{1}{2013}N=\frac{2013^{2011}+2012}{2013^{2011}+2013}=\frac{2013^{2011}+2013}{2013^{2011}+2013}-\frac{1}{2013^{2011}+2013}=1-\frac{1}{2013^{2011}+2013}\)

Vì \(\frac{1}{2013^{2012}+2013}< \frac{1}{2013^{2011}+2013}\) nên \(M=1-\frac{1}{2013^{2012}}>N=1-\frac{1}{2013^{2011}+2013}\)

Vậy \(M>N\)

Chúc bạn học tốt ~ 

hoang bao nhi
Xem chi tiết
Đào An Nguyên
26 tháng 7 2015 lúc 8:45

Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}

# APTX _ 4869 _ : ( $>$...
Xem chi tiết
Chim Hoạ Mi
3 tháng 3 2019 lúc 20:55

\(P=\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}\)

\(\Rightarrow P>\frac{2012}{2013}+\frac{2012}{2013}+\frac{2012}{2013}\)

\(P>\frac{4036}{2013}>1\)(1)

\(Q=\frac{2010+2011+2012}{2011+2012+2013}=\frac{6033}{6036}< 1\)(2)

\(Q< 1;P>1\Rightarrow P>Q\)

Nguyễn Linh Chi
3 tháng 3 2019 lúc 21:08

Câu hỏi của Son Goku - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo bài bạn Huy nhé!

shitbo
4 tháng 3 2019 lúc 12:13

cchchichimchim hhohoahọa mi sai mak cô răng  cô vx t i c k? :((((