D=\(\frac{2011^{2013}+1}{2011^{2014}+1}\)
<\(\frac{2011^{2013}+1+2010}{2011^{2014}+1+2010}\)
<\(\frac{2011^{2013}+2011}{2011^{2014}+2011}\)
<\(\frac{2011\left(2011^{2012}+1\right)}{2011\left(2011^{2013}+1\right)}\)
<\(\frac{2011^{2012}+1}{2011^{2013}+1}\)
<C
Vậy C>D
Cách 2:
Ta có: \(2011C=\frac{2011^{2013}+2011}{2011^{2013}+1}=1+\frac{2010}{2011^{2013}+1}\)
\(2011D=\frac{2011^{2014}+2011}{2011^{2014}+1}=1+\frac{2010}{2011^{2014}+1}\)
Mà \(\frac{2010}{2011^{2013}+1}>\frac{2010}{2011^{2014}+1}\Rightarrow1+\frac{2010}{2011^{2013}+1}>1+\frac{2010}{2011^{2014}+1}\)
\(\Rightarrow2011C>2011D\)
\(\Rightarrow C>D\)
Vậy C > D
C > D nhg bạn Công chúa ... bảo \(\frac{2011\left(2011^{2012}+1\right)}{2011\left(2011^{2013}+1\right)}< \frac{2011^{2012}+1}{2011^{2013}+1}\)là sai vì cả tử và mẫu rút gọn đi 2011 thì phải như thế này :\(\frac{2011\left(2011^{2012}+1\right)}{2011\left(2011^{2013}+1\right)}=\frac{2011^{2012}+1}{2011^{2013}+1}\)
\(\widehat{xOz}=120^o;\widehat{xOy}=60^o;\widehat{xOy},\widehat{yOz}\)là hai góc kề nhau. Cm: Tia Oy là tia phân giác của \(\widehat{xOz}\) .. Tính flames it
nhan C va D voi 2011 roi tach ra thanh tong voi 1
\(D\)=\(\frac{2011^{2013}+1}{2011^{2014}+1}< \frac{2011^{2013}+1+2010}{2011^{2014}+1+2010}=\frac{2011^{2013}+2011}{2011^{2014}+2011}\)
\(=\frac{2011^{2012}+1}{2011^{2013}+1}\)=\(C\)\(\Rightarrow C>D\)
Ta có: 20112013 < 20112014 nên 20112013 + 1 < 20112014 +1
\(\Rightarrow\frac{2011^{2013}+1}{2011^{2014}+1}< 1\)
\(\Rightarrow\frac{2011^{2013}+1}{2011^{2014}+1}< \frac{2011^{2013}+1+2010}{2011^{2014}+1+2010}=\frac{2011^{2013}+2011}{2011^{2014}+2011}\)
\(=\frac{2011\cdot\left(2011^{2012}+1\right)}{2011\cdot\left(2011^{2013}+1\right)}=\frac{2011^{2012}+1}{2011^{2013}+1}\)
\(\Rightarrow\frac{2011^{2013}+1}{2011^{2014}+1}< \frac{2011^{2012}+1}{2011^{2012\cdot3}+1}\)hay D < C
Vây D < C
D=\(\frac{2011^{2013}+1}{2011^{2014^{ }}+1}\)
\(\Rightarrow\)\(\frac{2011^{2013}+1+2010}{2011^{2014}+1+2010}\)
\(\Rightarrow\)\(\frac{2011^{2013}+2011}{2011^{2014}+2011}\)
\(\Rightarrow\)\(\frac{2011\left(2011^{2012}+1\right)}{2011\left(2011^{2013}+1\right)}\)
\(\Rightarrow\)\(\frac{2011^{2012}+1}{2011^{2013}+1}\)
\(\Rightarrow\)C > D
Ủa, bài làm của công chúa họ lê sai mà vẫn được chọn là sao?
So sánh \(C=\frac{2011^{2012}+1}{2011^{2013}+1}\) và \(D=\frac{2011^{2013}+1}{2011^{2014}+1}\)
+) \(2011.C=\frac{2011\left(2011^{2012}+1\right)}{2011^{2013}+1}\)
\(=\frac{2011^{2013}+2011}{2011^{2013}+1}\)
\(=\frac{2011^{2013}+1+2010}{2011^{2013}+1}\)
\(=\frac{2011^{2013}+1}{2011^{2013}+1}+\frac{2010}{2011^{2013}+1}\)
\(=1+\frac{2010}{2011^{2013}+1}\)
+) \(2011.D=\frac{2011\left(2011^{2013}+1\right)}{2011^{2014}+1}\)
\(=\frac{2011^{2014}+2011}{2011^{2014}+1}\)
\(=\frac{2011^{2014}+1+2010}{2011^{2014}+1}\)
\(=\frac{2011^{2014}+1}{2011^{2014}+1}+\frac{2010}{2011^{2014}+1}\)
\(=1+\frac{2010}{2011^{2014}+1}\)
+) Vì \(\frac{2010}{2011^{2013}+1}>\frac{2010}{2011^{2014}+1}\)
\(\Rightarrow1+\frac{2010}{2011^{2013}+1}>1+\frac{2010}{2011^{2014}+1}\)
Hay \(C>D\)
Ta có : \(2011C=\frac{2011^{2013}+2011}{2011^{2013}+1}=1+\frac{2010}{2011^{2013}+1}\)(1)
\(2011D=\frac{2011^{2014}+2011}{2011^{2014}+1}=1+\frac{2010}{2011^{2014}+1}\)(2)
Từ 1 và 2 \(=>1+\frac{2010}{2011^{2013}+1}>1+\frac{2010}{2011^{2014}+1}\)
\(=>2011C>2011D\)
\(=>C>D\)
C= (20112012+1)(20112014+1) / (20112013+1)(20112014+1)
D=(20112013+1)(20112013+1) / (20112014+1)(20112013+1)
Bây giờ C và D có mẫu số chung nên ta đi so sánh tử số
C=20112012(20112014+1)+1(20112014+1)
D=20112013(20112013+1)+1(20112013+1)
C=20114026+20112012+20112014+1
D=20114026+20112013+20112013+1
C=20112012+20112014
D=20112013+20112013
C=20112012(1+20112)
D=20112012(2011+2011)
Vậy nên C>D