Cho tam giác MNP vuông ở M, MN = 6 cm, MP = 8 cm. Vẽ hình. a,Tính NP,N;P. b, Phân giác của góc M cắt NP tại E. Tính NE, PE.
cho tam giác MNP, NP= 6 cm, MN= 10 cm, MP= 8 cm
CMR: tam giác MNR vuông
vẽ hình hộ luôn
Chứng minh tam giác vuông mà thấy số liệu là mừng chết mất =)))
Xét tam giác MNP có:
\(MN^2=NP^2+MP^2\)
\(10^2=6^2+8^2\)
\(100=36+64\)
Vậy trong tam giác này sử dụng được pytago
=> Tam giác MNP vuông tại P
Hình dễ lắm b. Lúc này hình chưa chứng minh là vuông nhé :)
Bây giờ mới để ý chỗ đề viết sai. Tam giác MNP chứ lấy đâu ra R? :)
xin lỗi nha chữ P gần chữ v của chữ vuông quá nên mình nhìn nhầm
Cho tam giác MNP vuông tại M (MN<MP). Vẽ đường cao MH(H thuộc NP)
a. Chứng minh tam giác MNP đồng dạng với tam giác HNM
b. Chứng minh MN^2=NH.NP
c. Vẽ tia phân giác MK của góc NMP (K thuộc NP). Biết MN=7,2 cm và MP=9,6 cm. Tính độ dài các đoạn thẳng NP, NH và MK.
tự vẽ hình nhé
a, Xét \(\Delta\) MNP và \(\Delta\) HNM
< MNP chung
<NMP=<NHM(=90\(^0\) )
b,=> \(\dfrac{MN}{HN}=\dfrac{NP}{MN}\)
=> \(MN^2=NP\cdot NH\)
c, xét \(\Delta\) NMP vg tại M, áp dụng định lí Py - ta - go trong tam giác vg có
\(MN^2+MP^2=NP^2\)
=> \(NP^2=144\Rightarrow NP=12cm\)
Ta có \(MN^2=NH\cdot NP\)
Thay số:\(7,2^2=NH\cdot12\Rightarrow NH=4,32cm\)
Mình nghĩ MK nên áp dụng ta lét nhé
7,2/x = 12/9,6-x
<=>7,2 . (9.6-x) = 12.x
<=>69,12 - 7,2x = 12x
<=>69,12 = 12x + 7,2x
<=> 69,12 = 19, 2
<=> x = 69,12 : 19,2 = 3,6
Vậy MK bằng 3,6cm
(mình ko chắc đúng ko nhưng theo mình là vậy)
cho tam giác MNP cân tại M Vẽ mi vuông góc với NP tại I
Chứng minh MI là đường trung trực của N P
vẽ IE vuông góc với MN tại A, IB vuông góc với MP tại B chứng minh tam giác IAB cân
Giả sử góc MNP = 45° MN = 2 cm Tính NP
Giả sử góc MNP = 30 độ Chứng minh tam giác AIB đều
1. Cho tam giác MNP cân tại M vẽ MH thuộc NP (H thuộc NP)
a) Chứng minh NH = PH
b) Cho MH = 4 cm; NH = 3 cm. Tính MN
2. Cho tam giác MNP vuông tại M, có góc N = 60o và MN = 5 cm. Tia phân giác của góc N cắt MP tại D. Kẻ DE vuông góc với PN tại E
a) Chứng minh: tam giác MNP = tam giác END
b) Chứng minh: tam giác MNE là tam giác đều
c) Tính độ dài cạnh PN
3. Cho tam giác MNP cân tại M, góc M = 30o; NP = 2 cm. Trên cạnh MP lấy điểm Q sao cho góc PNQ = 60o. Tính độ dài MQ
cho tam giác MNP vuông tại M có MN = 6 cm,MP=8 cm .khi đó NP bằng
A. 100cm B.10cm C.14cm D.48cm
B : tam giác MNP vuông ở m có chu vi 180 cm độ dài cạnh MP lớn hơn MN 20 cm cạn NP dài 80cm tính
a độ dài cạnh MN và cạnh MP
b diện tích hình tam giác MNP
cho tam giác MNP vuông tại N có MN = 6cm, Np = 8 cm. Tia phân giác của góc N cắt Mp tại H. Từ H kẻ He vuông góc với Np ( E thuộc NP)
a) Tính đọ dài MP
b) chứng minh: tam giác MNP đồng dạng với tam giác HEP
c) Tính độ dài HM; HP
Cho tam giác MNP cân tại M , vẽ MH vuông góc với NP
a ) Chứng minh : Tam giác MHN = Tam giác MHP
b ) Chứng minh MH là phân giác của tam giác MNP
c ) Tính MH nếu MN = 10 cm , NP = 12 cm
d ) Vẽ đường thẳng vuông góc với MN tại N và đường thẳng vuông góc với MP tại P , hai đường thẳng này cắt nhau tại K . Chứng minh M , K , H thẳng hàng .
a) xét tam giác MHN và tam giác MHP có
\(\widehat{MHN}\) = \(\widehat{MHP}\)(= 90 ĐỘ)
MN = MP ( tam giác MNP cân tại M)
MH chung
=> tam giác MHN = tam giác MHP (cạnh huyền cạnh góc vuông)
b) vì tam giác MHN = tam giác MHP (câu a)
=> \(\widehat{M1}\)= \(\widehat{M2}\)(2 góc tương ứng)
=> MH là tia phân giác của \(\widehat{NMP}\)
bạn tự vẽ hình nhé
a.
vì tam giác MNP cân tại M=> MN=MP và \(\widehat{N}\)=\(\widehat{P}\)
Xét tam giác MHN và tam giác MHP
có: MN-MP(CMT)
\(\widehat{N}\)=\(\widehat{P}\)(CMT)
MH là cạnh chung
\(\widehat{MHN}\)=\(\widehat{MHP}\)=\(^{90^0}\)
=> Tam giác MHN= Tam giác MHP(ch-gn)
=> \(\widehat{NMH}\)=\(\widehat{PMH}\)(2 GÓC TƯƠNG ỨNG) (1)
và NH=PH( 2 cạnh tương ứng)
mà H THUỘC NP=> NH=PH=1/2NP (3)
b. Vì H năm giữa N,P
=> MH nằm giữa MN và MP (2)
Từ (1) (2)=> MH là tia phân giác của góc NMP
c. Từ (3)=> NH=PH=1/2.12=6(cm)
Xét tam giác MNH có Góc H=90 độ
=>\(MN^2=NH^2+MH^2\)( ĐL Py-ta-go)
hay \(10^2=6^2+MH^2\)
=>\(MH^2=10^2-6^2\)
\(MH^2=64\)
=>MH=8(cm)