Cjo A(1,2,3,4,5,6) lấy 4 số tự nhiên khác nhau , có bao nhiêu số chia hết cho 3
có bao nhiêu số tự nhiên có 3 chữ số khác nhau chia hết cho5
có bao nhiêu số tự nhiên có 3 chữ số chia hết cho 5
có bao nhiêu số tự nhiên có 2 chữ số khác nhau
có bao nhiêu số tự nhiên có 5 chữ số khác nhau
Có bao nhiêu số tự nhiên có 3 chữ số khác nhau chia hết cho5 :
Xét với chữ số tận cùng là 0 : + Có 9 cách chọn chữ số hàng trăm
+ Có 8 cách chọn chữ số hàng chục
+ Có 1 cách chọn chữ số hàng đơn vị : 0
=> Có số số tự nhiên có 3 chữ số khác nhau chia hết cho 5 t/c là 0 : 9.8.1=72 ( số )
Xét với chữ số tận cùng là 5 : + Có 8 cách chọn chữ số hàng trăm
+ Có 8 cách chọn chữ số hàng chục
+ Có 1 cách chọn chữ số hàng đơn vị
=> Có số số tự nhiên có 3 chữ số khác nhau chia hết cho 5 t/c là 5 là : 8.8.1 = 64 ( số )
=> Có số số tự nhiên có 3 chữ số khác nhau chia hết cho 5 : 72 + 64 = 136 ( số )
Tương tự .
Từ 8 chữ số 1; 2; 3; 4; 5; 6; 7; 8:
a) Lập số tự nhiên N nhỏ nhất có 8 chữ số khác nhau chia hết cho 1111;
b) Lập số tự nhiên M lớn nhất có 8 chữ số khác nhau chia hết cho 1111;
c) Lập được bao nhiêu số tự nhiên có 8 chữ số khác nhau chia hết cho 1111?
a) số nhỏ nhất có tám chữ số khác nhau 12345678 chia cho 1111 được thưong nguyên là 11112.
Quy trình: X=X+1:1111X, CALC X? 11112, ==... Đến khi X=X+1=11115 ta được kết quả so nhỏ nhất cần tìm là 12348765.
b) số lon nhất có tám chữ số khác nhau 87654321 chia cho 1111 được thưong nguyên là 78896.
Quy trình: X=X-1:1111X, CALC X? 78897, ==... Đến khi X=X+1=78894 ta được kết quả so lon nhất cần tìm là 12348765.
Cho tập A = {0,1,2,3,4,5}. Có bao nhiêu số tự nhiên chẵn gồm 4 chữ số đôi một khác nhau chia hết cho 10 lấy từ tập A
Có \(A^3_5=60\) số tự nhiên thỏa mãn yêu cầu bài toán.
Tập đếm số: Từ các số 1,2,3,4,5,6 có bao nhiêu số có 4 chữ số khác nhau và mỗi số chia hết cho 4?
Dựa vào dấu hiệu chia hết cho 4 là 2 chữ số tận cùng chia hết cho 4. Gọi số đó có dạng abcd, trong đó (cd)thuộc {(12),(16),(24),(32),(36),(52),(56),(64)}, số cách chon a trong mỗi TH là 4, số cách chon b là 3. Từ đó suy ra ứng với mỗi bộ có 12 số, Vậy có 12.8=96 số
Tập đếm số:
Từ các số 1,2,3,4,5,6 có bao nhiêu số có 4 chữ số khác nhau và mỗi số chia hết cho 4?
Dựa vào dấu hiệu chia hết cho 4 là 2 chữ số tận cùng chia hết cho 4.
Gọi số đó có dạng abcd, trong đó (cd)thuộc {(12),(16),(24),(32),(36),(52),(56),(64)}, số cách chon a trong mỗi TH là 4, số cách chon b là 3.
Từ đó suy ra ứng với mỗi bộ có 12 số,
Vậy có 12.8=96 số
1. Từ các số 1,2,3,4,5,6 lập được bao nhiêu số tự nhiên gồm 3 số khác nhau chia hết cho 3
2.viết phương trình đường thẳng đi qua M(3;2) và cắt Ox,Oy tại A,B sao cho diện tích tam giác OAB nhỏ nhất
1. Ta chia các số thành 3 tập \(A=\left\{3;6\right\};B=\left\{1;4\right\};C=\left\{2;5\right\}\) có số dư khi chia 3 lần lượt là 0,1,2
Số chia hết cho 3 khi tổng các chữ số chia hết cho 3 \(\Rightarrow\) các chữ số phải được tạo thành bằng cách lấy 1 số từ tập A, 1 chữ số từ tập B, 1 chữ số thuộc tập C
\(\Rightarrow2.2.2=8\) cách chọn
Hoán vị 3 chữ số: \(3!=6\) cách
\(\Rightarrow8.6=48\) số thỏa mãn
2. Câu này đề là cắt Ox, Oy hay cắt "trục Ox, Oy" hay cắt "tia Ox, Oy" nhỉ?
Nếu là trục thì có vài trường hợp cần xét, tia thì chỉ cần xét 1 trường hợp thôi
2.
Do đường thẳng cắt tia Ox, Oy tại A và B, gọi \(A\left(a;0\right)\) và \(B\left(0;b\right)\) với \(\left\{{}\begin{matrix}0< a< 3\\0< b< 2\end{matrix}\right.\)
Phương trình đường thẳng dạng đoạn chắn: \(\dfrac{x}{a}+\dfrac{y}{b}=1\)
Do đường thẳng qua M nên:
\(\dfrac{3}{a}+\dfrac{2}{b}=1\Leftrightarrow b=\dfrac{2a}{a-3}\)
\(\Rightarrow S_{OAB}=\dfrac{1}{2}OA.OB=\dfrac{1}{2}ab=\dfrac{a^2}{a-3}=\dfrac{\left(a-3\right)\left(a+3\right)+9}{a-3}\)
\(S=a+3+\dfrac{9}{a-3}=a-3+\dfrac{9}{a-3}+6\ge2\sqrt{\dfrac{9\left(a-3\right)}{a-3}}+6=12\)
Dấu = xảy ra khi \(a-3=\dfrac{9}{a-3}\Rightarrow a=6\Rightarrow b=4\)
\(\Rightarrow\dfrac{x}{6}+\dfrac{y}{4}=1\Leftrightarrow2x+3y-12=0\)
Cho tập A={1,2,3,4,5,6}. Từ tập A, có thể lập được bao nhiêu số tự nhiên có 3 chữ số khác nhau và bé hơn 345?
Số tự nhiên có 3 chữ số có dạng \(\overline{abc}\).
TH1: \(a=3\)
Nếu \(b=4\) thì lập được 2 số tự nhiên thỏa mãn.
Nếu \(b\in\left\{1;2\right\}\), b có 2 cách chọn, c có 4 cách chọn \(\Rightarrow\) Lập được 8 số tự nhiên thỏa mãn.
TH2: \(a\in\left\{1;2\right\}\)
a có 2 cách chọn, b có 5 cách chọn, c có 4 cách chọn.
\(\Rightarrow\) Lập được \(2.5.4=40\) số tự nhiên thỏa mãn.
Vậy lập được 48 số tự nhiên thỏa mãn.
từ tập hợp A= ( 1,2,3,4,5,6) lập được bao nhiêu số có 3 chữ số khác nhau và chia hết cho 3.
a)Có bao nhiêu số tự nhiên có 6 chữ số khác nhau được sắp xếp theo thứ tự tăng dần
b)Có bao nhiêu số tự nhiên có 6 chữ số khác nhau được sắp xếp theo thứ tự giảm dần
c)Có bao nhiêu số tự nhiên gồm 3 chữ số khác nhau chia hết cho 5
d)Có bao nhiêu số tự nhiên gồm 3 chữ số khác nhau chia hết cho 3
Từ các chữ số 1,2,3,4,5,6 có thể lập được bao nhiêu số có bốn chữ số khác nhau và chia hết cho 4?
\(\overline{abcd}\)
(c,d) có thể là (1;2); (1;6); (2;4); (3;2); (3;6); (5;6)
Với mỗi bộ sẽ có \(1\cdot A^2_4=12\left(số\right)\)
=>Có 12*6=72 số