Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Vân Huyền
Xem chi tiết
cô nương Diễm Diễm
Xem chi tiết
nguyễn minh quý
Xem chi tiết
alibaba nguyễn
4 tháng 7 2017 lúc 9:18

Ta có: \(a^5+b^5\ge a^2b^2\left(a+b\right)\)

\(\Leftrightarrow a^5+b^5+2abc\ge a^2b^2\left(a+b\right)+2abc\)

\(\ge ab\left[ab\left(a+b\right)+2c\right]\ge ab\left[2\left(a+b\right)+2c\right]=2ab\left(a+b+c\right)\) (áp dụng với \(a,b,c\ge\sqrt{2}\))

\(\Rightarrow\frac{1}{a^5+b^5+2abc}\le\frac{1}{2ab\left(a+b+c\right)}\)

Áp dụng vào bài toán ta được

\(P\le\frac{1}{2xy\left(x+y+z\right)}+\frac{1}{2yz\left(x+y+z\right)}+\frac{1}{2zx\left(x+y+z\right)}\)

\(=\frac{x+y+z}{2xyz\left(x+y+z\right)}=\frac{1}{2xyz}\)

nguyễn hữu vượng
Xem chi tiết
Nguyễn Thị Mỹ Hạnh
Xem chi tiết
ha vu lam
6 tháng 4 2015 lúc 22:27

2xyz=x+y+z+9

=>2=1/yz+1/xz+1/xy+9/xyz

 nếu x>=y>=z>=1

=>2=< (1/z^2)+(1/z^2)+(1/z^2)+(1/z^2)=(1/z^2)4

=>z^2=<24

=>z=1 ;2 ;3 ;4

rồi thay vào tìm tiếp x ;y

Dương Minh Đức
15 tháng 1 2018 lúc 19:29

 xyz = 9 + x + y + z 
<=> 1 = 1/yz + 1/xz + 1/xy + 9/xyz 
giả sử: x ≥ y ≥ z ≥ 1, ta có: 
1 = 1/yz + 1/xz + 1/xy + 9/xyz ≤ 1/z^2 + 1/z^2 + 1/z^2 + 9/z^2 = 12/z^2 
=> z^2 ≤ 12 => z = 1, 2 , 3 
*z = 1: 
1=1/y + 1/x + 1/xy ≤ 1/y + 1/y + 1/y = 3/y 
=> y ≤ 3 => y = 1,2,3 
y =1 => x= 11 + x (vô nghiệm) 
y = 2 => 2x = 12 + x => x = 12 trường hợp nầy nghiệm (12,2,1) 
y = 3 => 3x = 13 + x ( không có ngiệm x nguyên) 

* z = 2 
1 = 1/2y + 1/2x + 1/xy + 1/2xy = 1/2y + 1/2x + 3/2xy ≤ 1/2(1/y + 1/y + 3/y) = .5/2y 
=> y ≤ 5/2 => y = 2 
=> 4x = 13 + x (không có nghiệm x nguyên) 

* z =3: 
1 = 1/3y + 1/3x + 1/xy + 3/xy = 1/3y + 1/3x + 4/xy ≤ 1/3(1/y +1/y + 12/y) = 14/3y 
=> y ≤ 14/3 => y = 3, 4 
y = 3 => 9x = 15 + x (không có nghiệm x nguyên) 
y = 4 => 12x = 16 + x (không có nghiệm x nguyên) 

Vậy pt có nghiệm là (12,2,1) và các hoán vị của nó.

Nguyễn Thị Minh Ánh
Xem chi tiết
Nguyễn Văn Tiến
Xem chi tiết
đạt trần tiến
2 tháng 6 2016 lúc 7:12

Sorry nha!! mình mới học lớp 4 Thôi à!

Phạm Anh Tuấn
Xem chi tiết
phan thị minh anh
Xem chi tiết
Lightning Farron
9 tháng 4 2017 lúc 20:28

\(P=\dfrac{xy}{1+x+y}+\dfrac{yz}{1+y+z}+\dfrac{xz}{1+z+x}\)

\(P+3=\dfrac{xy}{1+x+y}+1+\dfrac{yz}{1+y+z}+1+\dfrac{xz}{1+z+x}+1\)

\(P+3=\dfrac{\left(x+1\right)\left(y+1\right)}{1+x+y}+\dfrac{\left(y+1\right)\left(z+1\right)}{1+y+z}+\dfrac{\left(x+1\right)\left(z+1\right)}{1+z+x}\)

\(P+3=\dfrac{\left(x+1\right)\left(y+1\right)\left(z+1\right)}{\left(1+x+y\right)\left(z+1\right)}+\dfrac{\left(x+1\right)\left(y+1\right)\left(z+1\right)}{\left(x+1\right)\left(1+y+z\right)}+\dfrac{\left(x+1\right)\left(y+1\right)\left(z+1\right)}{\left(y+1\right)\left(1+z+x\right)}\)

\(P+3=\left(x+1\right)\left(y+1\right)\left(z+1\right)\left[\dfrac{1}{\left(1+x+y\right)\left(z+1\right)}+\dfrac{1}{\left(x+1\right)\left(1+y+z\right)}+\dfrac{1}{\left(y+1\right)\left(1+z+x\right)}\right]\)

\(\ge\left(x+1\right)\left(y+1\right)\left(z+1\right)\cdot\dfrac{9}{\left(1+x+y\right)\left(z+1\right)+\left(x+1\right)\left(1+y+z\right)+\left(y+1\right)\left(1+z+x\right)}\)

\(=\left(x+1\right)\left(y+1\right)\left(z+1\right)\cdot\dfrac{9}{\text{ }2xy+2yz+2xz+3x+3y+3z+3}\)

\(=\left(x+1\right)\left(y+1\right)\left(z+1\right)\cdot\dfrac{9}{\text{ }2xy+2yz+2xz+3\cdot2xyz}\)

\(=\left(x+1\right)\left(y+1\right)\left(z+1\right)\cdot\dfrac{9}{\text{ }2\left(xy+yz+xz+3xyz\right)}\)

Lại có:

\(\left(x+1\right)\left(y+1\right)\left(z+1\right)=xyz+xy+yz+xz+x+y+z+1\)

\(=xyz+xy+yz+xz+2xyz=xy+yz+xz+3xyz\)

\(\Rightarrow P+3\ge\left(xy+yz+xz+3xyz\right)\cdot\dfrac{9}{2\left(xy+yz+xz+3xyz\right)}\)

\(\Rightarrow P+3\ge\dfrac{9}{2}\Rightarrow P\ge\dfrac{9}{2}-3=\dfrac{3}{2}\)

Đẳng thức xảy ra khi \(x=y=z=\dfrac{1+\sqrt{3}}{2}\)