Phân tích đa thức thành nhân tử
e)x^3−x^2+x+3
g)3x^3−4x^2+13x−4
h)6x^3+x^2+x+1
i)4x^3+6x^2+4x+1
e) \(=x^2\left(x+1\right)-2x\left(x+1\right)+3\left(x+1\right)=\left(x+1\right)\left(x^2-2x+3\right)\)
g) \(=x^2\left(3x-1\right)-x\left(3x-1\right)+4\left(3x-1\right)=\left(3x-1\right)\left(x^2-x+4\right)\)
h) \(=3x^2\left(2x+1\right)-x\left(2x+1\right)+\left(2x+1\right)=\left(2x+1\right)\left(3x^2-x+1\right)\)
i) \(=2x^2\left(2x+1\right)+2x\left(2x+1\right)+\left(2x+1\right)=\left(2x+1\right)\left(2x^2+2x+1\right)\)
Phân tích đa thức thành nhân tử
\(e)x^3-x^2+x+3\)
\(f)2x^3-35x-75\)
\(g)3x^3-4x^2+13x-4\)
\(h)6x^3+x^2+x+1\)
\(i)4x^3+6x^2+4x+1\)
Phân tích đa thức thành nhân tử : 6x^2 -13x + 6
=6x^2 - 4x - 9x +6
=(6x^2 -4x) - (9x-6)
=2x(3x -2) - 3(3x-2)
=(3x-2) (2x - 3)
Phân tích đa thức sau thành nhân tử:
\(6x^2+13x+5\)
\(=6x^2+3x+10x+5=3x\left(2x+1\right)+5\left(2x+1\right)=\left(3x+5\right)\left(2x+1\right)\)
6x2+3x+10x+5=3x(2x+1)+5(2x+1)=(3x+5)(2x+1)
Phân tích đa thức thành nhân tử:
3x^3-4x^2+13x-4
\(3x^3-4x^2+13x-4\)
\(=x^2\left(3x-1\right)-x\left(3x-1\right)+4\left(3x-1\right) \)
\(=\left(3x-1\right)\left(x^2-x+4\right)\)
phân tích đa thức thành nhân tử
13x^3+4x^2-27x-9
phân tích đa thức thành nhân tử:
a) 9y^2 + 9y - 6xy + x^2 - 3x -4
b) x^4 + 6x^3 + 13x^2 + 12x + 4
\(x^4+6x^3+13x^2+12x+4\)
\(=x^4+x^3+5x^3+5x^2+8x^2+8x+4x+4\)
\(=x^3\left(x+1\right)+5x^2\left(x+1\right)+8x\left(x+1\right)+4\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+5x^2+8x+4\right)\)
\(=\left(x+1\right)\left(x^3+x^2+4x^2+4x+4x+4\right)\)
\(=\left(x+1\right)\left[x^2\left(x+1\right)+4x\left(x+1\right)+4\left(x+1\right)\right]\)
\(=\left(x+1\right)^2\left(x+2\right)^2\)
Phân tích đa thức thành nhân tử:
6x2+13x-15
\(6x^2+13x-15\)
\(=6x^2+18x-5x-15\)
\(=6x.\left(x+3\right)-5.\left(x+3\right)\)
\(=\left(x+3\right).\left(6x-5\right)\)
\(6x^2+13x-15\)
\(=6x^2+18x-5x-15\)
\(=6x\left(x+3\right)-5\left(x+3\right)\)
\(=\left(x+3\right)\left(6x-5\right)\)
\(6x^2+13x-15\)
\(\Rightarrow6x^2+18x-5x-15x\)
\(\Rightarrow6x\times\left(x+3\right)-5\times\left(x+3\right)\)
\(\Rightarrow\left(x+3\right)\times\left(6x-5\right)\)
Code : Breacker
phân tích đa thức thành nhân tử :
(x^2 +4x−3)^2 −5x ( x^2+4x−3) + 6x^2
A,
x^2 - y^2 -2x -2y
= (x^2 - y^2) -(2x +2y)
= (x+y)(x-y) -2(x+y)
= (x+y)(x-y-2)
B,
5x^6 - 320
=5(x^6 - 64)
=5( (x^3)^2 - 8^2)
= 5( x^3 - 8)(x^3+8)
=5(x-2)(x^2 + 2x+4)(x+2)(x^2-2x-4)